Ocean contamination by micro- and nanoplastics represents a potential threat to marine biota, from bacterial communities to higher organisms. In this work, the effect of in vivo exposure of Mytilus galloprovincialis to amino modified nanopolystyrene (PS–NH2) (10 μg/L, 96 h) on hemolymph immune parameters and microbiota composition were investigated. Nanoplastics significantly affected immune parameters (decreased phagocytosis, increased ROS and lysozyme activity, inhibition of NO production). These changes were associated with a shift in hemolymph microbiota composition, with increase in some genera (Arcobacter-like, Psychrobium, Vibrio), and decreases in others (Shewanella, Mycoplasma). The results indicate that exposure to nanoplastics can impact on the microbiome of marine bivalves, and suggest that downregulation of immune defences induced by PS-NH2 may favour potentially pathogenic bacteria. These data underline how exposure to nanoplastics may represent a potential threat to the complex interplay between innate immunity and host microbiota, thus affecting the homeostatic processes involved in maintenance of organism health.
Impact of nanoplastics on hemolymph immune parameters and microbiota composition in Mytilus galloprovincialis
Auguste M.;Lasa A.;Balbi T.;Pallavicini A.;Vezzulli L.;Canesi L.
2020-01-01
Abstract
Ocean contamination by micro- and nanoplastics represents a potential threat to marine biota, from bacterial communities to higher organisms. In this work, the effect of in vivo exposure of Mytilus galloprovincialis to amino modified nanopolystyrene (PS–NH2) (10 μg/L, 96 h) on hemolymph immune parameters and microbiota composition were investigated. Nanoplastics significantly affected immune parameters (decreased phagocytosis, increased ROS and lysozyme activity, inhibition of NO production). These changes were associated with a shift in hemolymph microbiota composition, with increase in some genera (Arcobacter-like, Psychrobium, Vibrio), and decreases in others (Shewanella, Mycoplasma). The results indicate that exposure to nanoplastics can impact on the microbiome of marine bivalves, and suggest that downregulation of immune defences induced by PS-NH2 may favour potentially pathogenic bacteria. These data underline how exposure to nanoplastics may represent a potential threat to the complex interplay between innate immunity and host microbiota, thus affecting the homeostatic processes involved in maintenance of organism health.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.