The flexibility of power plants is a critical feature in energy production environments nowadays, due to the high share of nondispatchable renewables. This fact dramatically increases the number of daily startups and load variations of power plants, pushing the current technologies to operate out of their optimal range. Furthermore, ambient conditions significantly influence the actual plant performance, creating deviations against the energy sold during the day-ahead and reducing the profit margins for the operators. A solution to reduce the impact of unpredicted ambient conditions, and to increase the flexibility margins of existing combined cycles, is represented by the possibility of dynamically controlling the temperature at compressor intake. At present, cooling down the compressor intake is a common practice to govern combined cycle performance in hot regions such as the Middle East and Africa, while heating up the compressor intake is commonly adopted to reduce the minimum environmental load (MEL). However, such applications involve relatively slow regulation of air intake, mainly coping with extreme operating conditions. The use of continuously varying, at a relatively quick pace, the air temperature at compressor intake, to mitigate ambient condition fluctuations and to cope with electrical market requirements, involves proper modeling of the combined cycle dynamic behavior, including the short-term and long-term impacts of intake air temperature variations. This work presents a dynamic modeling framework for the whole combined cycle applied to one of IREN Energia's Combined Cycle Units. The paper encloses the model validation against field data of the target power plant. The validated model is then used to show the potential in flexibility augmentation of properly adjusting the compressor intake temperature during operation.

Gas Turbine Combined Cycle Flexibility: A Dynamic Model for Compressor Intake Conditioning Through a Heat-Pump

Rossi, Iacopo;Traverso, Alberto
2019-01-01

Abstract

The flexibility of power plants is a critical feature in energy production environments nowadays, due to the high share of nondispatchable renewables. This fact dramatically increases the number of daily startups and load variations of power plants, pushing the current technologies to operate out of their optimal range. Furthermore, ambient conditions significantly influence the actual plant performance, creating deviations against the energy sold during the day-ahead and reducing the profit margins for the operators. A solution to reduce the impact of unpredicted ambient conditions, and to increase the flexibility margins of existing combined cycles, is represented by the possibility of dynamically controlling the temperature at compressor intake. At present, cooling down the compressor intake is a common practice to govern combined cycle performance in hot regions such as the Middle East and Africa, while heating up the compressor intake is commonly adopted to reduce the minimum environmental load (MEL). However, such applications involve relatively slow regulation of air intake, mainly coping with extreme operating conditions. The use of continuously varying, at a relatively quick pace, the air temperature at compressor intake, to mitigate ambient condition fluctuations and to cope with electrical market requirements, involves proper modeling of the combined cycle dynamic behavior, including the short-term and long-term impacts of intake air temperature variations. This work presents a dynamic modeling framework for the whole combined cycle applied to one of IREN Energia's Combined Cycle Units. The paper encloses the model validation against field data of the target power plant. The validated model is then used to show the potential in flexibility augmentation of properly adjusting the compressor intake temperature during operation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1011613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact