Among the reactions involved in the production and destruction of deuterium duringBig Bang Nucleosynthesis, the deuterium-burningD(p,γ)3He reaction has the largest uncertainty and limits the precision of theoretical estimates of primordial deuterium abundance. Here we report the results of a careful commissioning of the experimental setup used to measure the cross-section of the D(p,γ)3He reaction at the Laboratory for Underground Nuclear Astrophysics of the Gran Sasso Laboratory (Italy). The commissioning was aimed at minimising all sources of systematic uncertainty in the measured cross sections. The overall systematic error achieved (< 3%) will enable improved predictions of BBN deuterium abundance.
Setup commissioning for an improved measurement of the D(p,γ)3He cross section at Big Bang Nucleosynthesis energies
F. Cavanna;F. Ferraro;P. Corvisiero;P. Prati;S. Zavatarelli;
2020-01-01
Abstract
Among the reactions involved in the production and destruction of deuterium duringBig Bang Nucleosynthesis, the deuterium-burningD(p,γ)3He reaction has the largest uncertainty and limits the precision of theoretical estimates of primordial deuterium abundance. Here we report the results of a careful commissioning of the experimental setup used to measure the cross-section of the D(p,γ)3He reaction at the Laboratory for Underground Nuclear Astrophysics of the Gran Sasso Laboratory (Italy). The commissioning was aimed at minimising all sources of systematic uncertainty in the measured cross sections. The overall systematic error achieved (< 3%) will enable improved predictions of BBN deuterium abundance.File | Dimensione | Formato | |
---|---|---|---|
mossa-epja-20.pdf
accesso chiuso
Descrizione: articolo principale
Tipologia:
Documento in versione editoriale
Dimensione
876.5 kB
Formato
Adobe PDF
|
876.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.