Biogeochemical cycles that include processes to control platinum (Pt) distribution remain widely unknown in aquatic environments, especially in coastal systems. Dissolved Pt concentrations in coastal seawater (PtD) and in suspended particulate matter (SPM, PtP) were measured, together with master variables comprising dissolved oxygen, dissolved and particulate organic carbon, chlorophyll-a, turbidity, and ammonium levels, along two longitudinal profiles in the industrial Genoa Harbor (north-west Italy). Concentrations and spatial distribution of PtD and PtP levels reflect distinct concentration gradients that were attributed to different Pt sources such as hospital, domestic and industrial wastewater, atmospheric deposition, and/or road runoff. Concentrations reaching up to 0.18 ng L-1 PtD and 14 ng g-1 PtP reflect the impact of Pt urban inputs to coastal sites. These first data highlight considerable anthropogenic contamination in a confined harbor compared with the proposed reference value for the western Mediterranean surface seawater measured at external sites. Identified correlations between Pt levels and human pollution signals suggest the potential use of Pt as a new tracer of anthropogenic inputs that can be applied to other urbanised coastal systems. Biogeochemical processes that induce changes in the partitioning and fate of Pt in coastal seawater reflect a spatial variability and highlight the need for comprehensive environmental monitoring at an appropriate spatial scale.

Spatial variability and sources of platinum in a contaminated harbor-tracing coastal urban inputs

Massa F.;Castellano M.;Magi E.;Povero P.;
2020-01-01

Abstract

Biogeochemical cycles that include processes to control platinum (Pt) distribution remain widely unknown in aquatic environments, especially in coastal systems. Dissolved Pt concentrations in coastal seawater (PtD) and in suspended particulate matter (SPM, PtP) were measured, together with master variables comprising dissolved oxygen, dissolved and particulate organic carbon, chlorophyll-a, turbidity, and ammonium levels, along two longitudinal profiles in the industrial Genoa Harbor (north-west Italy). Concentrations and spatial distribution of PtD and PtP levels reflect distinct concentration gradients that were attributed to different Pt sources such as hospital, domestic and industrial wastewater, atmospheric deposition, and/or road runoff. Concentrations reaching up to 0.18 ng L-1 PtD and 14 ng g-1 PtP reflect the impact of Pt urban inputs to coastal sites. These first data highlight considerable anthropogenic contamination in a confined harbor compared with the proposed reference value for the western Mediterranean surface seawater measured at external sites. Identified correlations between Pt levels and human pollution signals suggest the potential use of Pt as a new tracer of anthropogenic inputs that can be applied to other urbanised coastal systems. Biogeochemical processes that induce changes in the partitioning and fate of Pt in coastal seawater reflect a spatial variability and highlight the need for comprehensive environmental monitoring at an appropriate spatial scale.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1003245
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact