A fully automated processing chain for near real-time mapping of burned forest areas using Sentinel-2 multispectral data is presented. The acronym AUTOBAM (AUTOmatic Burned Areas Mapper) is used to denote it. AUTOBAM is conceived to work daily at a national scale for the Italian territory to support the Italian Civil Protection Department in the management of one of the major natural hazards, which affects the territory. The processing chain includes a Sentinel-2 data procurement component, an image processing algorithm, and the delivery of the map to the end-user. The data procurement component searches every day for the most updated products into different archives. The image processing part represents the core of AUTOBAM and implements an algorithm for burned forest areas mapping that uses, as fundamental parameters, the relativized form of the delta normalized burn ratio and the normalized difference vegetation index. The minimum mapping unit is 1 ha. The algorithm implemented in the image processing block is validated off-line using maps of burned areas produced by the Copernicus Emergency Management Service. The results of the validation shows an overall accuracy (considering the classes of burned and unburned areas) larger than 95% and a kappa coecient larger than 80%. For what concerns the class of burned areas, the commission error is around 1%3%, except for one case where it reaches 25%, while the omission error ranges between 6% and 25%.

An automatic processing chain for near real-time mapping of burned forest areas using sentinel-2 data

Ferraris L.;
2020-01-01

Abstract

A fully automated processing chain for near real-time mapping of burned forest areas using Sentinel-2 multispectral data is presented. The acronym AUTOBAM (AUTOmatic Burned Areas Mapper) is used to denote it. AUTOBAM is conceived to work daily at a national scale for the Italian territory to support the Italian Civil Protection Department in the management of one of the major natural hazards, which affects the territory. The processing chain includes a Sentinel-2 data procurement component, an image processing algorithm, and the delivery of the map to the end-user. The data procurement component searches every day for the most updated products into different archives. The image processing part represents the core of AUTOBAM and implements an algorithm for burned forest areas mapping that uses, as fundamental parameters, the relativized form of the delta normalized burn ratio and the normalized difference vegetation index. The minimum mapping unit is 1 ha. The algorithm implemented in the image processing block is validated off-line using maps of burned areas produced by the Copernicus Emergency Management Service. The results of the validation shows an overall accuracy (considering the classes of burned and unburned areas) larger than 95% and a kappa coecient larger than 80%. For what concerns the class of burned areas, the commission error is around 1%3%, except for one case where it reaches 25%, while the omission error ranges between 6% and 25%.
File in questo prodotto:
File Dimensione Formato  
Pulvirenti et al., 2020 remotesensing-12-00674-v2.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in versione editoriale
Dimensione 10.24 MB
Formato Adobe PDF
10.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1002558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 36
social impact