Beam lattice materials can be characterized by a periodic microstructure realizing a geometrically regular pattern of elementary cells. Within this framework, governing the free and forced wave propagation by means of spectral design techniques and/or energy dissipation mechanisms is a major issue of theoretical interest with applications in aerospace, chemical, naval, biomedical engineering. The first part of the Thesis addresses the free propagation of Bloch waves in non-dissipative microstructured cellular materials. Focus is on the alternative formulations suited to describe the wave propagation in the bidimensional infinite material domain, according to the classic canons of linear solid or structural mechanics. Adopting the centrosymmetric tetrachiral cell as prototypical periodic topology, the frequency dispersion spectrum is obtained by applying the Floquet-Bloch theory. The dispersion spectrum resulting from a synthetic Lagrangian beam lattice formulation is compared with its counterpart derived from different continuous models (high-fidelity first-order heterogeneous and equivalent homogenized micropolar continua). Asymptotic perturbation-based approximations and numerical spectral solutions are compared and cross-validated. Adopting the low-frequency band gaps of the dispersion spectrum as functional targets, parametric analyses are carried out to highlight the descriptive limits of the synthetic models and to explore the enlarged parameter space described by high-fidelity models. The microstructural design or tuning of the mechanical properties of the cellular microstructure is employed to successfully verify the wave filtering functionality of the tetrachiral material. Alternatively, band gaps in the material spectrum can be opened at target center frequencies by using metamaterials with inertial resonators. Based on these motivations, in the second part of the Thesis, a general dynamic formulation is presented for determining the dispersion properties of viscoelastic metamaterials, equipped with local dissipative resonators. The linear mechanism of local resonance is realized by tuning periodic auxiliary masses, viscoelastically coupled with the beam lattice microstructure. As peculiar aspect, the viscoelastic coupling is derived by a mechanical formulation based on the Boltzmann superposition integral, whose kernel is approximated by a Prony series. Consequently, the free propagation of damped Bloch waves is governed by a linear homogeneous system of integro-differential equations of motion. Therefore, differential equations of motion with frequency-dependent coefficients are obtained by applying the bilateral Laplace transform. The corresponding complex-valued branches characterizing the dispersion spectrum are determined and parametrically analyzed. Particularly, the spectra corresponding to Taylor series approximations of the equation coefficients are investigated. The standard dynamic equations with linear viscous damping are recovered at the first order approximation. Increasing approximation orders determine non-negligible spectral effects, including the occurrence of pure damping spectral branches. Finally, the forced response to harmonic single frequency external forces in the frequency and the time domains is investigated. The response in the time domain is obtained by applying the inverse bilateral Laplace transform. The metamaterial responses to non-resonant, resonant and quasi-resonant external forces are compared and discussed from a qualitative and quantitative viewpoint.

Free and forced propagation of Bloch waves in viscoelastic beam lattices

VADALA', FRANCESCA
2020-04-24

Abstract

Beam lattice materials can be characterized by a periodic microstructure realizing a geometrically regular pattern of elementary cells. Within this framework, governing the free and forced wave propagation by means of spectral design techniques and/or energy dissipation mechanisms is a major issue of theoretical interest with applications in aerospace, chemical, naval, biomedical engineering. The first part of the Thesis addresses the free propagation of Bloch waves in non-dissipative microstructured cellular materials. Focus is on the alternative formulations suited to describe the wave propagation in the bidimensional infinite material domain, according to the classic canons of linear solid or structural mechanics. Adopting the centrosymmetric tetrachiral cell as prototypical periodic topology, the frequency dispersion spectrum is obtained by applying the Floquet-Bloch theory. The dispersion spectrum resulting from a synthetic Lagrangian beam lattice formulation is compared with its counterpart derived from different continuous models (high-fidelity first-order heterogeneous and equivalent homogenized micropolar continua). Asymptotic perturbation-based approximations and numerical spectral solutions are compared and cross-validated. Adopting the low-frequency band gaps of the dispersion spectrum as functional targets, parametric analyses are carried out to highlight the descriptive limits of the synthetic models and to explore the enlarged parameter space described by high-fidelity models. The microstructural design or tuning of the mechanical properties of the cellular microstructure is employed to successfully verify the wave filtering functionality of the tetrachiral material. Alternatively, band gaps in the material spectrum can be opened at target center frequencies by using metamaterials with inertial resonators. Based on these motivations, in the second part of the Thesis, a general dynamic formulation is presented for determining the dispersion properties of viscoelastic metamaterials, equipped with local dissipative resonators. The linear mechanism of local resonance is realized by tuning periodic auxiliary masses, viscoelastically coupled with the beam lattice microstructure. As peculiar aspect, the viscoelastic coupling is derived by a mechanical formulation based on the Boltzmann superposition integral, whose kernel is approximated by a Prony series. Consequently, the free propagation of damped Bloch waves is governed by a linear homogeneous system of integro-differential equations of motion. Therefore, differential equations of motion with frequency-dependent coefficients are obtained by applying the bilateral Laplace transform. The corresponding complex-valued branches characterizing the dispersion spectrum are determined and parametrically analyzed. Particularly, the spectra corresponding to Taylor series approximations of the equation coefficients are investigated. The standard dynamic equations with linear viscous damping are recovered at the first order approximation. Increasing approximation orders determine non-negligible spectral effects, including the occurrence of pure damping spectral branches. Finally, the forced response to harmonic single frequency external forces in the frequency and the time domains is investigated. The response in the time domain is obtained by applying the inverse bilateral Laplace transform. The metamaterial responses to non-resonant, resonant and quasi-resonant external forces are compared and discussed from a qualitative and quantitative viewpoint.
24-apr-2020
File in questo prodotto:
File Dimensione Formato  
phdunige_4311870.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 9.31 MB
Formato Adobe PDF
9.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1001821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact