Airway remodeling is accepted to be a determining component within the natural history of asthma. It is a phenomenon characterized by changes in the airways structures that marches in parallel with and can be influenced by airway inflammation, floating at the interface between both natural and adaptive immunity and physical and mechanical cells behavior. In this review we aimed to highlight the comprehensive, yet not exhaustive, evidences of how immune cells induce, regulate and adapt to the recognized markers of airway remodeling. Mucous cell hyperplasia, epithelial dysfunction and mesenchymal transition, extracellular matrix protein synthesis and restructuration, fibroblast to myofibroblast transition, airway smooth muscle proliferation, bioactive and contractile properties, and vascular remodeling encompass complex physiopathological mechanisms that can be induced, suppressed or regulated by different cellular and molecular pathways. Growth factors, cytokines, chemokines and adhesion molecules expressed or derived either from the immune network of cells infiltrating the asthmatic airways and involving T helper lymphocytes, immune lymphoid cells, dendritic cells, eosinophils, neutrophils, mast cells or by the structural components such as epithelial cells, fibroblasts, myocytes, airway smooth muscle cells concur with protein cellular matrix component and metalloproteases in modifying the airway structure in a detrimental way. The consequences in lung function decline, fixed airway obstruction and clinical severity of the disease suggest the possibility of identify among the immune molecular pathway of remodeling some biological parameters or signal pathway to be either a good tracer for monitoring the disease evolution or a target for hypothetical phenotypes and endotypes. In the era of personalized medicine, a biomarker of remodeling might predict a response to small-molecule inhibitors or biologicals potentially targeting a fundamental aspect of asthma pathogenesis that impacts on the low responsiveness to airway inflammation directed treatments.

Immune induction of airway remodeling

Riccio A. M.
2019-01-01

Abstract

Airway remodeling is accepted to be a determining component within the natural history of asthma. It is a phenomenon characterized by changes in the airways structures that marches in parallel with and can be influenced by airway inflammation, floating at the interface between both natural and adaptive immunity and physical and mechanical cells behavior. In this review we aimed to highlight the comprehensive, yet not exhaustive, evidences of how immune cells induce, regulate and adapt to the recognized markers of airway remodeling. Mucous cell hyperplasia, epithelial dysfunction and mesenchymal transition, extracellular matrix protein synthesis and restructuration, fibroblast to myofibroblast transition, airway smooth muscle proliferation, bioactive and contractile properties, and vascular remodeling encompass complex physiopathological mechanisms that can be induced, suppressed or regulated by different cellular and molecular pathways. Growth factors, cytokines, chemokines and adhesion molecules expressed or derived either from the immune network of cells infiltrating the asthmatic airways and involving T helper lymphocytes, immune lymphoid cells, dendritic cells, eosinophils, neutrophils, mast cells or by the structural components such as epithelial cells, fibroblasts, myocytes, airway smooth muscle cells concur with protein cellular matrix component and metalloproteases in modifying the airway structure in a detrimental way. The consequences in lung function decline, fixed airway obstruction and clinical severity of the disease suggest the possibility of identify among the immune molecular pathway of remodeling some biological parameters or signal pathway to be either a good tracer for monitoring the disease evolution or a target for hypothetical phenotypes and endotypes. In the era of personalized medicine, a biomarker of remodeling might predict a response to small-molecule inhibitors or biologicals potentially targeting a fundamental aspect of asthma pathogenesis that impacts on the low responsiveness to airway inflammation directed treatments.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1044532319300028-main.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1001077
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 53
social impact