A continuum model for dielectric elastomers is proposed on the basis of a micromorphic theory of electroelasticity. A biaxial microstretch deformation is considered to describe macrostretch and electric polarization due to applied mechanical loads and electric fields. A statistical isotropic condition is exploited to express the dependence of strain tensors on microstretch, and the equilibrium balance laws are given for micro- and macrodeformation and the electric potential. A one-dimensional problem is formulated to model a layer of dielectric elastomer subject to electric potential and mechanical traction. Some numerical results are obtained, which show consistence with the expected electroelastic physical behavior of such structures.

A microstretch continuum approach to model dielectric elastomers

Romeo, Maurizio
2020-01-01

Abstract

A continuum model for dielectric elastomers is proposed on the basis of a micromorphic theory of electroelasticity. A biaxial microstretch deformation is considered to describe macrostretch and electric polarization due to applied mechanical loads and electric fields. A statistical isotropic condition is exploited to express the dependence of strain tensors on microstretch, and the equilibrium balance laws are given for micro- and macrodeformation and the electric potential. A one-dimensional problem is formulated to model a layer of dielectric elastomer subject to electric potential and mechanical traction. Some numerical results are obtained, which show consistence with the expected electroelastic physical behavior of such structures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1000176
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact