Self-learning abilities in autonomous systems are essential to improve their situational awareness and detection of normal/abnormal situations. In this work, we propose a graph matching technique for activity detection in autonomous agents by using the Gromov-Wasserstein framework. A clustering approach is used to discretise continuous agents' states related to a specific task into a set of nodes with similar objectives. Additionally, a probabilistic transition matrix between nodes is used as edges weights to build a graph. In this paper, we extract an abnormal area based on a sub-graph that encodes the differences between coupled of activities. Such sub-graph is obtained by applying a threshold on the optimal transport matrix, which is obtained through the graph matching procedure. The obtained results are evaluated through experiments performed by a robot in a simulated environment and by a real autonomous vehicle moving within a University Campus.

Abnormality detection using graph matching for multi-task dynamics of autonomous systems

Zaal H.;Baydoun M.;Marcenaro L.;Regazzoni C. S.
2019

Abstract

Self-learning abilities in autonomous systems are essential to improve their situational awareness and detection of normal/abnormal situations. In this work, we propose a graph matching technique for activity detection in autonomous agents by using the Gromov-Wasserstein framework. A clustering approach is used to discretise continuous agents' states related to a specific task into a set of nodes with similar objectives. Additionally, a probabilistic transition matrix between nodes is used as edges weights to build a graph. In this paper, we extract an abnormal area based on a sub-graph that encodes the differences between coupled of activities. Such sub-graph is obtained by applying a threshold on the optimal transport matrix, which is obtained through the graph matching procedure. The obtained results are evaluated through experiments performed by a robot in a simulated environment and by a real autonomous vehicle moving within a University Campus.
File in questo prodotto:
File Dimensione Formato  
Abnormality Detection Graph matching AVSS 2019.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/991501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact