Given a zero-dimensional ideal I in a polynomial ring, many algorithms start by finding univariate polynomials in~I, or by computing a lex-Groebner basis of~I. These are related to considering the minimal polynomial of an element in P/I, which may be computed using Linear Algebra from a Groebner Basis (for any term-ordering). In this tutorial we'll see algorithms for computing minimal polynomials, applications of modular methods, and then some applications, namely algorithms for computing radicals and primary decompositions of zero-dimensional ideals, and also for testing radicality and maximality. We'll also address a kind of opposite problem: given a "geometrical description'', such as a finite set of points, find the ideal of polynomials which vanish at it. We start from the original Buchberger-Moeller algorithm, and we show some developments. All this will be done with a special eye on the practical implementations, and with demostrations in CoCoA.
Linear Algebra for Zero-Dimensional Ideals
Bigatti, Anna Maria
2019-01-01
Abstract
Given a zero-dimensional ideal I in a polynomial ring, many algorithms start by finding univariate polynomials in~I, or by computing a lex-Groebner basis of~I. These are related to considering the minimal polynomial of an element in P/I, which may be computed using Linear Algebra from a Groebner Basis (for any term-ordering). In this tutorial we'll see algorithms for computing minimal polynomials, applications of modular methods, and then some applications, namely algorithms for computing radicals and primary decompositions of zero-dimensional ideals, and also for testing radicality and maximality. We'll also address a kind of opposite problem: given a "geometrical description'', such as a finite set of points, find the ideal of polynomials which vanish at it. We start from the original Buchberger-Moeller algorithm, and we show some developments. All this will be done with a special eye on the practical implementations, and with demostrations in CoCoA.File | Dimensione | Formato | |
---|---|---|---|
Bigatti.pdf
accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Dimensione
791.91 kB
Formato
Adobe PDF
|
791.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.