In the last two decades, increasing research efforts in neuroscience have been focused on determining both structural and functional connectivity of brain circuits, with the main goal of relating the wiring diagram of neuronal systems to their emerging properties, from the microscale to the macroscale. While combining multisite parallel recordings with structural circuits' reconstruction in vivo is still very challenging, the reductionist in vitro approach based on neuronal cultures offers lower technical difficulties and is much more stable under control conditions. In this chapter, we present different approaches to infer the connectivity of cultured neuronal networks using multielectrode array or calcium imaging recordings. We first formally introduce the used methods, and then we will describe into details how those methods were applied in case studies. Since multielectrode array and calcium imaging recordings provide distinct and complementary spatiotemporal features of neuronal activity, in this chapter we present the strategies implemented with the two different methodologies in distinct sections.

In the last two decades, increasing research efforts in neuroscience have been focused on determining both structural and functional connectivity of brain circuits, with the main goal of relating the wiring diagram of neuronal systems to their emerging properties, from the microscale to the macroscale. While combining multisite parallel recordings with structural circuits’ reconstruction in vivo is still very challenging, the reductionist in vitro approach based on neuronal cultures offers lower technical difficulties and is much more stable under control conditions. In this chapter, we present different approaches to infer the connectivity of cultured neuronal networks using multielectrode array or calcium imaging recordings. We first formally introduce the used methods, and then we will describe into details how those methods were applied in case studies. Since multielectrode array and calcium imaging recordings provide distinct and complementary spatiotemporal features of neuronal activity, in this chapter we present the strategies implemented with the two different methodologies in distinct sections.

Reconstruction of Functional Connectivity from Multielectrode Recordings and Calcium Imaging

Massobrio P.
2019-01-01

Abstract

In the last two decades, increasing research efforts in neuroscience have been focused on determining both structural and functional connectivity of brain circuits, with the main goal of relating the wiring diagram of neuronal systems to their emerging properties, from the microscale to the macroscale. While combining multisite parallel recordings with structural circuits’ reconstruction in vivo is still very challenging, the reductionist in vitro approach based on neuronal cultures offers lower technical difficulties and is much more stable under control conditions. In this chapter, we present different approaches to infer the connectivity of cultured neuronal networks using multielectrode array or calcium imaging recordings. We first formally introduce the used methods, and then we will describe into details how those methods were applied in case studies. Since multielectrode array and calcium imaging recordings provide distinct and complementary spatiotemporal features of neuronal activity, in this chapter we present the strategies implemented with the two different methodologies in distinct sections.
2019
In the last two decades, increasing research efforts in neuroscience have been focused on determining both structural and functional connectivity of brain circuits, with the main goal of relating the wiring diagram of neuronal systems to their emerging properties, from the microscale to the macroscale. While combining multisite parallel recordings with structural circuits' reconstruction in vivo is still very challenging, the reductionist in vitro approach based on neuronal cultures offers lower technical difficulties and is much more stable under control conditions. In this chapter, we present different approaches to infer the connectivity of cultured neuronal networks using multielectrode array or calcium imaging recordings. We first formally introduce the used methods, and then we will describe into details how those methods were applied in case studies. Since multielectrode array and calcium imaging recordings provide distinct and complementary spatiotemporal features of neuronal activity, in this chapter we present the strategies implemented with the two different methodologies in distinct sections.
978-3-030-11134-2
978-3-030-11135-9
File in questo prodotto:
File Dimensione Formato  
Bonifazi, and Massobrio, 2019.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/958514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact