Composite materials are becoming more and more popular, even for large ship and offshore structures. They offer lightweight and adaptable strength and stiffness properties. In case of slender structures, where buckling is the governing limit state, such features are valuable and allow designing high performance assemblies like racing crafts as well as very large sail ships. The case of composite masts of sail ships is rather interesting as, on the one hand, relatively large, stiff but light structures are needed and, on the other hand, their reliability is crucial for ship safety. Hence, complete understanding of structural behaviour is essential to avoid too large safety factors. Indeed, such case is also the paradigm of the dynamic buckling behaviour of slender columns structures, pointing out differences between the widely used quasi-static design approach and the more realistic time domain simulations. An earlier work studied the dynamic buckling behaviour of a metallic mast. Now, the study has been extended to the much more complex case of composite masts, showing some variations due to anisotropic material properties and specific weight values different by an order of magnitude. Comprehensive description of the dynamic buckling of a typical composite mast panel is outlined in this paper and compared to results from a previous investigation on aluminium alloy mast.

Dynamic buckling of composite mast panels of sail ships

Gaiotti M.;Ghelardi S.;Rizzo C. M.
2019-01-01

Abstract

Composite materials are becoming more and more popular, even for large ship and offshore structures. They offer lightweight and adaptable strength and stiffness properties. In case of slender structures, where buckling is the governing limit state, such features are valuable and allow designing high performance assemblies like racing crafts as well as very large sail ships. The case of composite masts of sail ships is rather interesting as, on the one hand, relatively large, stiff but light structures are needed and, on the other hand, their reliability is crucial for ship safety. Hence, complete understanding of structural behaviour is essential to avoid too large safety factors. Indeed, such case is also the paradigm of the dynamic buckling behaviour of slender columns structures, pointing out differences between the widely used quasi-static design approach and the more realistic time domain simulations. An earlier work studied the dynamic buckling behaviour of a metallic mast. Now, the study has been extended to the much more complex case of composite masts, showing some variations due to anisotropic material properties and specific weight values different by an order of magnitude. Comprehensive description of the dynamic buckling of a typical composite mast panel is outlined in this paper and compared to results from a previous investigation on aluminium alloy mast.
File in questo prodotto:
File Dimensione Formato  
150_paper marstruct2019_Rev-SG_CR_postprint.pdf

accesso chiuso

Descrizione: Published paper
Tipologia: Documento in versione editoriale
Dimensione 2.98 MB
Formato Adobe PDF
2.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
150_paper marstruct2019_Rev-SG_CR_preprint.pdf

accesso aperto

Descrizione: Pre print paper
Tipologia: Documento in Post-print
Dimensione 592.27 kB
Formato Adobe PDF
592.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/957649
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact