Despite the increasing popularity of Machine Learning methods, their usage in safety-critical applications is sometimes limited by the impossibility of providing formal guarantees on their behaviour. In this work we focus on one such application, where Kernel Ridge Regression with Random Fourier Features is used to learn controllers for a prosthetic hand. Due to the non-linearity of the activation function used, these controllers sometimes fail in correctly identifying users’ intention. Under specific circumstances muscular activation levels may be misinterpreted by the method, resulting in the prosthetic hand not behaving as intended. To alleviate this problem, we propose a novel method to verify the presence of this kind of intent detection mismatch and to repair controllers leveraging off-the-shelf LP technology without using additional data. We demonstrate the feasibility of our approach using datasets gathered from human participants.

Repairing Learned Controllers with Convex Optimization: A Case Study

GUIDOTTI, DARIO;Leofante F.;Tacchella A.
2019-01-01

Abstract

Despite the increasing popularity of Machine Learning methods, their usage in safety-critical applications is sometimes limited by the impossibility of providing formal guarantees on their behaviour. In this work we focus on one such application, where Kernel Ridge Regression with Random Fourier Features is used to learn controllers for a prosthetic hand. Due to the non-linearity of the activation function used, these controllers sometimes fail in correctly identifying users’ intention. Under specific circumstances muscular activation levels may be misinterpreted by the method, resulting in the prosthetic hand not behaving as intended. To alleviate this problem, we propose a novel method to verify the presence of this kind of intent detection mismatch and to repair controllers leveraging off-the-shelf LP technology without using additional data. We demonstrate the feasibility of our approach using datasets gathered from human participants.
2019
978-3-030-19211-2
978-3-030-19212-9
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso chiuso

Tipologia: Documento in Post-print
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/950624
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact