In this paper, light absorption enhancement in thin film solar cell (SC) is reported and analyzed. The suggested design is based on a nanostructured pattern that increases the diffuse scattered component of radiation and hence the absorption through the active layer. An ion beam sputtering (lBS) approach is used to texture large areas of the glass substrate with high aspect-ratio ripples in order to increase light scattering. Then, thin film SC supported on the textured glass is simulated and analyzed using 3D finite difference time domain (FDTD) method. The suggested SC can offer an ultimate efficiency of 19.26% with short circuit current of 15.76 mA/cm2 with an enhancement of 31.435% over the SC without texturing surface.

Light absorption enhancement in thin film hydrgenated amorphus Si solar cells

Mennucci, C.;Giordano, M. C.;Martella, C.;Repetto, D.;De Mongeot, F. Buatier;
2017-01-01

Abstract

In this paper, light absorption enhancement in thin film solar cell (SC) is reported and analyzed. The suggested design is based on a nanostructured pattern that increases the diffuse scattered component of radiation and hence the absorption through the active layer. An ion beam sputtering (lBS) approach is used to texture large areas of the glass substrate with high aspect-ratio ripples in order to increase light scattering. Then, thin film SC supported on the textured glass is simulated and analyzed using 3D finite difference time domain (FDTD) method. The suggested SC can offer an ultimate efficiency of 19.26% with short circuit current of 15.76 mA/cm2 with an enhancement of 31.435% over the SC without texturing surface.
2017
978-0-9960078-3-2
File in questo prodotto:
File Dimensione Formato  
17_ACES_PV Egypt 07916400.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/939956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact