Let $F(s)$ be a function of degree $2$ from the extended Selberg class. Assuming certain bounds for the shifted convolution sums associated with $F(s)$, we prove that the Rankin-Selberg convolution $F\hskip-.07cm\otimes \hskip-.07cm\overline{F}(s)$ has holomorphic continuation to the half-plane $\si>\theta$ apart from a simple pole at $s=1$, where $1/2<\theta<1$ depends on the above mentioned bounds.

On the Rankin-Selberg convolution of degree $2$ functions from the extended Selberg class

PERELLI, A.
In corso di stampa

Abstract

Let $F(s)$ be a function of degree $2$ from the extended Selberg class. Assuming certain bounds for the shifted convolution sums associated with $F(s)$, we prove that the Rankin-Selberg convolution $F\hskip-.07cm\otimes \hskip-.07cm\overline{F}(s)$ has holomorphic continuation to the half-plane $\si>\theta$ apart from a simple pole at $s=1$, where $1/2<\theta<1$ depends on the above mentioned bounds.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/934192
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact