The aim of this work is the assessment of the most suitable hydrogen solution for ship applications and the definition of the role of hydrogen as alternative fuel for shipping. The importance of the “Hydrogen Technologies” for ships comes from the most important social challenge that is driving innovation in the shipping sector: Environmental Challenge. The PhD research project encountered important development both from the industrial and the academic side that brought to the construction of a joint laboratory between Fincantieri and the Polytechnic School of the University of Genoa, the: HI-SEA laboratory, dedicated to the study of fuel cell system for marine application. Moreover the simulation modelling and experimental results developed during the PhD research on the PEM fuel cell and MH hydrogen storage systems, found an application in the nautical sector. The former brought to a patent and the creation of a dedicated start-up company named H2Boat, that was recognised as University spin-off. The first part of the study define the role of hydrogen as alternative energy vector (fuel) for marine application, analysing the complex context in which it is supposed to be used. In part 2.1 a detailed assessment of the characteristics of different alternative fuels have been conducted. The complexity of work brought to the construction of comparative models, descripted in part 2.2 that have been used to analyse the characteristic of various alternative solution. An analysis of the PEM FCS state of the art is presented in part 2.3 together with the definition of FCS design for marine application in part 2.4. The study of the hydrogen technologies considered also the definition of simulation models of fuel cell systems and metal hydride hydrogen storage system 3.2. The former has also been assessed towards experimental tests, presented in part 3.3. The models have been used to develop larger laboratory, to define correct operative parameters and FCS design. Finally a number of application developed during the PhD study are proposed in part 4 to show the goal of the research that is still under development.

Fuel cell systems for marine applications

LAMBERTI, THOMAS
2018-05-18

Abstract

The aim of this work is the assessment of the most suitable hydrogen solution for ship applications and the definition of the role of hydrogen as alternative fuel for shipping. The importance of the “Hydrogen Technologies” for ships comes from the most important social challenge that is driving innovation in the shipping sector: Environmental Challenge. The PhD research project encountered important development both from the industrial and the academic side that brought to the construction of a joint laboratory between Fincantieri and the Polytechnic School of the University of Genoa, the: HI-SEA laboratory, dedicated to the study of fuel cell system for marine application. Moreover the simulation modelling and experimental results developed during the PhD research on the PEM fuel cell and MH hydrogen storage systems, found an application in the nautical sector. The former brought to a patent and the creation of a dedicated start-up company named H2Boat, that was recognised as University spin-off. The first part of the study define the role of hydrogen as alternative energy vector (fuel) for marine application, analysing the complex context in which it is supposed to be used. In part 2.1 a detailed assessment of the characteristics of different alternative fuels have been conducted. The complexity of work brought to the construction of comparative models, descripted in part 2.2 that have been used to analyse the characteristic of various alternative solution. An analysis of the PEM FCS state of the art is presented in part 2.3 together with the definition of FCS design for marine application in part 2.4. The study of the hydrogen technologies considered also the definition of simulation models of fuel cell systems and metal hydride hydrogen storage system 3.2. The former has also been assessed towards experimental tests, presented in part 3.3. The models have been used to develop larger laboratory, to define correct operative parameters and FCS design. Finally a number of application developed during the PhD study are proposed in part 4 to show the goal of the research that is still under development.
18-mag-2018
File in questo prodotto:
File Dimensione Formato  
phdunige_2938158.pdf

Open Access dal 19/05/2021

Tipologia: Tesi di dottorato
Dimensione 11.25 MB
Formato Adobe PDF
11.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/931185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact