This paper presents a steady-state model of an innovative turbocharged solid oxide fuel cell system fed by biofuel. The aim of this plant layout is the development of a reduced-cost solution, which involves the pressurization carried out with a mass production machine such as a turbocharger (instead of a microturbine). The turbocharger pressurizes the solid oxide fuel cell to increase the performance. Following the experimental results to choose the suitable machine and for validating the turbocharger model, this tool was implemented to model the whole plant. It was used to calculate the operational conditions and to define the coupling aspects between the turbocharger, the recuperator and the solid oxide fuel cell system (comprising a fuel cell stack, an air preheater, a reformer, an off-gas burner and an anodic ejector). The model permitted the component characterization and supported the design of an emulator test rig based on the coupling of a turbocharger and a pressure vessel. This facility was designed to conduct the experimental tests at system level on the matching between the machine and the fuel cell, especially for the dynamic and the control system aspects. To emulate the fuel cell, the rig was based on a specially designed pressure vessel equipped with a burner and inert ceramic materials. Moreover, the facility was designed to produce the turbine inlet conditions in terms of mass flow, temperature, pressure and gas composition (similitude conditions can be evaluated).

Design and Emulation of a Turbocharged Bio-Fuelled SOFC Plant

M. L. Ferrari;M. De Campo;L. Magistri
2018-01-01

Abstract

This paper presents a steady-state model of an innovative turbocharged solid oxide fuel cell system fed by biofuel. The aim of this plant layout is the development of a reduced-cost solution, which involves the pressurization carried out with a mass production machine such as a turbocharger (instead of a microturbine). The turbocharger pressurizes the solid oxide fuel cell to increase the performance. Following the experimental results to choose the suitable machine and for validating the turbocharger model, this tool was implemented to model the whole plant. It was used to calculate the operational conditions and to define the coupling aspects between the turbocharger, the recuperator and the solid oxide fuel cell system (comprising a fuel cell stack, an air preheater, a reformer, an off-gas burner and an anodic ejector). The model permitted the component characterization and supported the design of an emulator test rig based on the coupling of a turbocharger and a pressure vessel. This facility was designed to conduct the experimental tests at system level on the matching between the machine and the fuel cell, especially for the dynamic and the control system aspects. To emulate the fuel cell, the rig was based on a specially designed pressure vessel equipped with a burner and inert ceramic materials. Moreover, the facility was designed to produce the turbine inlet conditions in terms of mass flow, temperature, pressure and gas composition (similitude conditions can be evaluated).
File in questo prodotto:
File Dimensione Formato  
GT2018-75026 pubblicato.pdf

accesso chiuso

Tipologia: Documento in Post-print
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/917768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact