In this work, a preliminary study as regards the possibility to define optimal control strategies for the hazmat (hazardous material) traffic flowing towards one critical road infrastructure (e.g. as in the case study a tunnel) at the macroscopic level is introduced. Specifically, the simplified model that is studied is related to part of a highway, on which the hazmat traffic can flow from one entrance. The control variables are represented by the number of vehicles that are allowed to enter the highway during a specific time interval, while the state variables are the queue of vehicles before the entrance, the number of vehicles in the various tracts of the highway, and the number of vehicles that enter the tunnel. The objective function to be minimized is characterized by three main terms: the queue, the hazard over the road, and the hazard related to the tunnel.
Optimal control of hazardous materials traffic flow: The case of transport through a critical infrastructure
Bersani, Chiara;Minciardi, Riccardo;Robba, Michela;Sacile, Roberto;Tomasoni, Angela Maria
2009-01-01
Abstract
In this work, a preliminary study as regards the possibility to define optimal control strategies for the hazmat (hazardous material) traffic flowing towards one critical road infrastructure (e.g. as in the case study a tunnel) at the macroscopic level is introduced. Specifically, the simplified model that is studied is related to part of a highway, on which the hazmat traffic can flow from one entrance. The control variables are represented by the number of vehicles that are allowed to enter the highway during a specific time interval, while the state variables are the queue of vehicles before the entrance, the number of vehicles in the various tracts of the highway, and the number of vehicles that enter the tunnel. The objective function to be minimized is characterized by three main terms: the queue, the hazard over the road, and the hazard related to the tunnel.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.