This paper describes the overall architecture of a simulator developed by Simulation Team and Genova University to address the problem of strategic decision making related to prevention and mitigation of natural disasters risks. The proposed approach combines a Decision Support System for supporting decision makers in strategic planning with interoperable simulation and serious games. The scenario used for the validation in this case focuses with a particular attention on hydrogeology and related risks within urban environments. The authors propose a multilevel and multi resolution simulation able to match the models of the flooding with that one of the population reproducing interest groups as well as single people. Indeed the population is simulated by intelligent agents (IAs) that include physiological, social and psychological parameters reproducing feelings and emotions that allow them to live and move inside the virtual city both in normal conditions as well as during the disasters. In facts in normal conditions works devoted to serve as preventive actions devoted to prevent certain events and or mitigate their impact are carried out; vice versa during the crisis, decisions change addressing the identification of convenient operational planning and/or evacuation site. Each time, an action is undertaken by the decision makers, the IAs react dynamically by changing their feelings and their political consensus, so it becomes possible to plan the actions in an effective way by maintaining the consensus and support of the population.

SIMULATION AS DECISION SUPPORT SYSTEM FOR DISASTER PREVENTION

Agostino G. Bruzzone;Matteo Agresta;Kirill Sinelshchikov.
2017

Abstract

This paper describes the overall architecture of a simulator developed by Simulation Team and Genova University to address the problem of strategic decision making related to prevention and mitigation of natural disasters risks. The proposed approach combines a Decision Support System for supporting decision makers in strategic planning with interoperable simulation and serious games. The scenario used for the validation in this case focuses with a particular attention on hydrogeology and related risks within urban environments. The authors propose a multilevel and multi resolution simulation able to match the models of the flooding with that one of the population reproducing interest groups as well as single people. Indeed the population is simulated by intelligent agents (IAs) that include physiological, social and psychological parameters reproducing feelings and emotions that allow them to live and move inside the virtual city both in normal conditions as well as during the disasters. In facts in normal conditions works devoted to serve as preventive actions devoted to prevent certain events and or mitigate their impact are carried out; vice versa during the crisis, decisions change addressing the identification of convenient operational planning and/or evacuation site. Each time, an action is undertaken by the decision makers, the IAs react dynamically by changing their feelings and their political consensus, so it becomes possible to plan the actions in an effective way by maintaining the consensus and support of the population.
File in questo prodotto:
File Dimensione Formato  
SESDE_6.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 608.99 kB
Formato Adobe PDF
608.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/903916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact