This paper presents a design model of a turbocharged solid oxide fuel cell system fueled by biogas. The aim of this plant layout is the development of a low-cost solution considering the coupling of the solid oxide fuel cell (SOFC) with a low-cost machine such as a turbocharger (instead of a microturbine). The whole system model calculates the operational conditions and realizes the coupling between the turbocharger, the recuperator and the solid oxide fuel cell system (comprising SOFC, air preheater, fuel compressor and pre-heater, reformer, off-gas burner and anodic ejector). This model also supports the design of an emulator test rig in which a burner, located inside a thermal insulated vessel, replaces the solid oxide fuel cell system. The emulator test rig will be useful to study the matching between the turbocharger and the fuel cell to validate simulation models, design innovative solutions and test the control system of the whole plant.

Turbocharged Solid Oxide Fuel Cell System: Design and Emulation

DE CAMPO, MARCO;Ferrari M. L.;Magistri L.
2017-01-01

Abstract

This paper presents a design model of a turbocharged solid oxide fuel cell system fueled by biogas. The aim of this plant layout is the development of a low-cost solution considering the coupling of the solid oxide fuel cell (SOFC) with a low-cost machine such as a turbocharger (instead of a microturbine). The whole system model calculates the operational conditions and realizes the coupling between the turbocharger, the recuperator and the solid oxide fuel cell system (comprising SOFC, air preheater, fuel compressor and pre-heater, reformer, off-gas burner and anodic ejector). This model also supports the design of an emulator test rig in which a burner, located inside a thermal insulated vessel, replaces the solid oxide fuel cell system. The emulator test rig will be useful to study the matching between the turbocharger and the fuel cell to validate simulation models, design innovative solutions and test the control system of the whole plant.
File in questo prodotto:
File Dimensione Formato  
EFC17151.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 297.15 kB
Formato Adobe PDF
297.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/894887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact