In this paper we address the problem of detecting spatio-temporal interest points in video sequences and we introduce a novel detection algorithm based on the three-dimensional shearlet transform. By evaluating our method on different application scenarios, we show we are able to extract meaningful spatio-temporal features from video sequences of human movements, including full body movements selected from benchmark datasets of human actions and human-machine interaction sequences where the goal is to segment drawing activities in smaller action primitives.
Detecting spatio-temporally interest points using the shearlet transform
Malafronte, Damiano;Odone, Francesca;De Vito, Ernesto
2017-01-01
Abstract
In this paper we address the problem of detecting spatio-temporal interest points in video sequences and we introduce a novel detection algorithm based on the three-dimensional shearlet transform. By evaluating our method on different application scenarios, we show we are able to extract meaningful spatio-temporal features from video sequences of human movements, including full body movements selected from benchmark datasets of human actions and human-machine interaction sequences where the goal is to segment drawing activities in smaller action primitives.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
cameraready_IbPRIA2017.pdf
accesso aperto
Tipologia:
Documento in Post-print
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.