Over the past decade, continuous glucose monitoring (CGM) has proven to be a very resourceful tool for diabetes management. To date, CGM devices are employed for both retrospective and online applications. Their use allows to better describe the patients' pathology as well as to achieve a better control of patients' level of glycemia. The analysis of CGM sensor data makes possible to observe a wide range of metrics, such as the glycemic variability during the day or the amount of time spent below or above certain glycemic thresholds. However, due to the high variability of the glycemic signals among sensors and individuals, CGM data analysis is a non-trivial task. Standard signal filtering solutions fall short when an appropriate model personalization is not applied. State-of-the-art data-driven strategies for online CGM forecasting rely upon the use of recursive filters. Each time a new sample is collected, such models need to adjust their parameters in order to predict the next glycemic level. In this paper we aim at demonstrating that the problem of online CGM forecasting can be successfully tackled by personalized machine learning models, that do not need to recursively update their parameters.

Data-driven strategies for robust forecast of continuous glucose monitoring time-series

Fiorini, Samuele;MARTINI, CHIARA;Cordera, Renzo;Maggi, Davide;Verri, Alessandro;Barla, Annalisa
2017-01-01

Abstract

Over the past decade, continuous glucose monitoring (CGM) has proven to be a very resourceful tool for diabetes management. To date, CGM devices are employed for both retrospective and online applications. Their use allows to better describe the patients' pathology as well as to achieve a better control of patients' level of glycemia. The analysis of CGM sensor data makes possible to observe a wide range of metrics, such as the glycemic variability during the day or the amount of time spent below or above certain glycemic thresholds. However, due to the high variability of the glycemic signals among sensors and individuals, CGM data analysis is a non-trivial task. Standard signal filtering solutions fall short when an appropriate model personalization is not applied. State-of-the-art data-driven strategies for online CGM forecasting rely upon the use of recursive filters. Each time a new sample is collected, such models need to adjust their parameters in order to predict the next glycemic level. In this paper we aim at demonstrating that the problem of online CGM forecasting can be successfully tackled by personalized machine learning models, that do not need to recursively update their parameters.
2017
978-1-5090-2809-2
File in questo prodotto:
File Dimensione Formato  
Fiorini S et al PMID29060208.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 931.33 kB
Formato Adobe PDF
931.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/884657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact