Bernstein, Sturmfels and Zelevinsky proved in 1993 that the maximal minors of a matrix of variables form a universal Gröbner basis. We present a very short proof of this result, along with a broad generalization to matrices with multihomogeneous structures. Our main tool is a rigidity statement for radical Borel-fixed ideals in multigraded polynomial rings.
Universal Gröbner Bases for Maximal Minors of Matrices of Linear Forms
CONCA, ALDO
2015-01-01
Abstract
Bernstein, Sturmfels and Zelevinsky proved in 1993 that the maximal minors of a matrix of variables form a universal Gröbner basis. We present a very short proof of this result, along with a broad generalization to matrices with multihomogeneous structures. Our main tool is a rigidity statement for radical Borel-fixed ideals in multigraded polynomial rings.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
(2015) Conca - Universal Gröbner Bases for Maximal Minors of Matrices of Linear Form.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
124.81 kB
Formato
Adobe PDF
|
124.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.