The student dropout phenomenon affects every level of educational systems in countries all over the world, including the most socio-economically developed ones. Success in education is crucial for jobs, productivity and growth. Low levels and low completion rates create a skills bottleneck in the economic sectors and inhibit innovation, productivity, and competitiveness. The early detection of the phenomenon, at all levels of education, and the deepening of the causes that determine it are necessary prerequisites for any initiative aimed at reducing the factors affecting the decrease of the rates of formative failures and dropout at all levels. This book aims to contribute to the continuing debate on the possibilities of how to improve educational processes with the help of data mining techniques. The book closes with a fascinating application of the principles of Artificial Neural Networks to help students at risk of university dropping out. It presents the case study of the dropout phenomenon in many degree programs at the University of Genoa (Italy). The analysis model, at the moment experienced on the Genoa University reality, is proposed as a simple and flexible instrument to support the activities of monitoring and evaluation of all the educational systems, an instrument available to decision-makers in identifying programs and strategies to support the persistency and the success in educational systems, but also to the families, in the recognition of the problems in which the intervention of the family, accompanying or not the institution, is decisive.

Predicting Students’ Academic Dropout Using Artificial Neural Network.

SIRI, ANNA
2014-01-01

Abstract

The student dropout phenomenon affects every level of educational systems in countries all over the world, including the most socio-economically developed ones. Success in education is crucial for jobs, productivity and growth. Low levels and low completion rates create a skills bottleneck in the economic sectors and inhibit innovation, productivity, and competitiveness. The early detection of the phenomenon, at all levels of education, and the deepening of the causes that determine it are necessary prerequisites for any initiative aimed at reducing the factors affecting the decrease of the rates of formative failures and dropout at all levels. This book aims to contribute to the continuing debate on the possibilities of how to improve educational processes with the help of data mining techniques. The book closes with a fascinating application of the principles of Artificial Neural Networks to help students at risk of university dropping out. It presents the case study of the dropout phenomenon in many degree programs at the University of Genoa (Italy). The analysis model, at the moment experienced on the Genoa University reality, is proposed as a simple and flexible instrument to support the activities of monitoring and evaluation of all the educational systems, an instrument available to decision-makers in identifying programs and strategies to support the persistency and the success in educational systems, but also to the families, in the recognition of the problems in which the intervention of the family, accompanying or not the institution, is decisive.
2014
978-1-63463-171-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/856466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact