This ongoing study investigates the neural correlates of ankle dorsi-plantar flexion in active, passive, and proprioceptive tasks. Specifically, we investigated two proprioceptive matching tasks that required a simple combination of active and passive ankle movements: (1) a memory-based ipsilateral matching task and (2) a contralateral concurrent matching task. As expected, during the passive tasks, subjects recruited the same brain areas involved in the correspondent active movements (primary motor cortex (M1), premotor cortex (PM) supplementary motor cortex (SMA) and primary somatosensory cortex (S1)), but the activations were lower. Instead, in both the proprioceptive matching tasks, subjects recruited more motor and sensory-motor areas of the brain and the activations were greater.
Neural correlates of ankle movements during different motor tasks: A feasibility study
IANDOLO, RICCARDO;Bellini, A.;BOMMARITO, GIULIA;MANCARDI, GIOVANNI LUIGI;CASADIO, MAURA;INGLESE, MARIA MATILDE
2015-01-01
Abstract
This ongoing study investigates the neural correlates of ankle dorsi-plantar flexion in active, passive, and proprioceptive tasks. Specifically, we investigated two proprioceptive matching tasks that required a simple combination of active and passive ankle movements: (1) a memory-based ipsilateral matching task and (2) a contralateral concurrent matching task. As expected, during the passive tasks, subjects recruited the same brain areas involved in the correspondent active movements (primary motor cortex (M1), premotor cortex (PM) supplementary motor cortex (SMA) and primary somatosensory cortex (S1)), but the activations were lower. Instead, in both the proprioceptive matching tasks, subjects recruited more motor and sensory-motor areas of the brain and the activations were greater.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.