In vitro neuronal networks coupled to Micro-Electrode Arrays (MEAs) represent a valid experimental framework to study neuronal dynamics. This preparation is free of chemical or physical constraints and allows neurons to self-organize during development, creating networks that exhibit complex spatio-temporal patterns of activity. Starting from this experimental evidence, here we address the question whether a particular network architecture can drive the network dynamics towards a sub-, super-, or critical state.

Emergence of critical dynamics in large-scale in vitro cortical networks

MASSOBRIO, PAOLO;PASQUALE, VALENTINA;MARTINOIA, SERGIO
2015-01-01

Abstract

In vitro neuronal networks coupled to Micro-Electrode Arrays (MEAs) represent a valid experimental framework to study neuronal dynamics. This preparation is free of chemical or physical constraints and allows neurons to self-organize during development, creating networks that exhibit complex spatio-temporal patterns of activity. Starting from this experimental evidence, here we address the question whether a particular network architecture can drive the network dynamics towards a sub-, super-, or critical state.
2015
9781424492718
9781424492718
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/841787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact