The problem of behavior assessment in video surveillance is approached using trajectory classification. Lagrangian state dynamic is used for probabilistic modeling of trajectory patterns and an off-line parameter learning method for the model is proposed. For classification purpose, an on-line sequential maximum a posterior trajectory classifier is introduced based on particle filter. Finally, the performance of this method is evaluated using a traffic video data set.

A particle filter based sequential trajectory classifier for behavior analysis in video surveillance

BASTANI, VAHID;MARCENARO, LUCIO;REGAZZONI, CARLO
2015-01-01

Abstract

The problem of behavior assessment in video surveillance is approached using trajectory classification. Lagrangian state dynamic is used for probabilistic modeling of trajectory patterns and an off-line parameter learning method for the model is proposed. For classification purpose, an on-line sequential maximum a posterior trajectory classifier is introduced based on particle filter. Finally, the performance of this method is evaluated using a traffic video data set.
2015
9781479983391
9781479983391
File in questo prodotto:
File Dimensione Formato  
A particle filter based sequential trajectory classifier for behavior analysis in video surveillance.pdf

accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in versione editoriale
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/840344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact