The problem of behavior assessment in video surveillance is approached using trajectory classification. Lagrangian state dynamic is used for probabilistic modeling of trajectory patterns and an off-line parameter learning method for the model is proposed. For classification purpose, an on-line sequential maximum a posterior trajectory classifier is introduced based on particle filter. Finally, the performance of this method is evaluated using a traffic video data set.
A particle filter based sequential trajectory classifier for behavior analysis in video surveillance
BASTANI, VAHID;MARCENARO, LUCIO;REGAZZONI, CARLO
2015-01-01
Abstract
The problem of behavior assessment in video surveillance is approached using trajectory classification. Lagrangian state dynamic is used for probabilistic modeling of trajectory patterns and an off-line parameter learning method for the model is proposed. For classification purpose, an on-line sequential maximum a posterior trajectory classifier is introduced based on particle filter. Finally, the performance of this method is evaluated using a traffic video data set.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A particle filter based sequential trajectory classifier for behavior analysis in video surveillance.pdf
accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in versione editoriale
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.