Volt/VAR Optimization (VVO) function is an important element in real time operation of distribution networks and major part of advanced Distribution Management Systems (DMS). From planning prospective, VVO function can be used to optimize reactive power flow in distribution network to recommend the best operating condition for the control equipment in a predefined period of time in future (i.e. 24 hour). The typical objective function of VVO functions are minimizing the total system loss for a certain system load level. VVO function computes the optimized setting for transformer on-load tap changers (OLTC), Voltage Regulators (VR), and Capacitor Banks, while system voltage profile is maintained within its limits. In this paper the objective is to develop a planning VVO engine which can calculate the most probable expected loss of the network for the next 24 hours, and can recommend the best expected operating condition for the control equipment. For the VVO algorithm a full mixed integer linear programming (MILP) model is used to solve the loss objective of VVO problem for a planning application. The load uncertainty is modeled by an ARMA model which can create any arbitrary number of forecasted load scenarios to be used by VVO engine (implemented in a commercial solver GAMS, “General Algebraic Modeling System”). The implemented models have been tested on a real distribution network in southern Sweden and the results are presented.

Volt/VAR Optimization function with load uncertainty for planning of MV distribution networks

MASSUCCO, STEFANO;SILVESTRO, FEDERICO;
2015-01-01

Abstract

Volt/VAR Optimization (VVO) function is an important element in real time operation of distribution networks and major part of advanced Distribution Management Systems (DMS). From planning prospective, VVO function can be used to optimize reactive power flow in distribution network to recommend the best operating condition for the control equipment in a predefined period of time in future (i.e. 24 hour). The typical objective function of VVO functions are minimizing the total system loss for a certain system load level. VVO function computes the optimized setting for transformer on-load tap changers (OLTC), Voltage Regulators (VR), and Capacitor Banks, while system voltage profile is maintained within its limits. In this paper the objective is to develop a planning VVO engine which can calculate the most probable expected loss of the network for the next 24 hours, and can recommend the best expected operating condition for the control equipment. For the VVO algorithm a full mixed integer linear programming (MILP) model is used to solve the loss objective of VVO problem for a planning application. The load uncertainty is modeled by an ARMA model which can create any arbitrary number of forecasted load scenarios to be used by VVO engine (implemented in a commercial solver GAMS, “General Algebraic Modeling System”). The implemented models have been tested on a real distribution network in southern Sweden and the results are presented.
2015
978-1-4799-7693-5
978-1-4799-7693-5
File in questo prodotto:
File Dimensione Formato  
07232790.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 474.59 kB
Formato Adobe PDF
474.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/821916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact