Detection of dim moving point targets in cluttered background can have a great impact on the tracking performances. This may become a crucial problem, especially in low-SNR environments, where target characteristics are highly susceptible to corruption. In this paper, an extended target model, namely Interacting Multiple Model (IMM), applied to Track-Before-Detect (TBD) based detection algorithm, for far objects, in infrared (IR) sequences is presented. The approach can automatically adapts the kinematic parameter estimations, such as position and velocity, in accordance with the predictions as dimensions of the target change. A sub-par sensor can cause tracking problems. In particular, for a single object, noisy observations (i.e. fragmented measures) could be associated to different tracks. In order to avoid this problem, presented framework introduces a cooperative mechanism between Joint Probabilistic Data Association Filter (JPDAF) and IMM. The experimental results on real and simulated sequences demonstrate effectiveness of the proposed approach.
A track-before-detect algorithm using joint probabilistic data association filter and interacting multiple models
CHIAPPINO, SIMONE;MARCENARO, LUCIO;REGAZZONI, CARLO
2014-01-01
Abstract
Detection of dim moving point targets in cluttered background can have a great impact on the tracking performances. This may become a crucial problem, especially in low-SNR environments, where target characteristics are highly susceptible to corruption. In this paper, an extended target model, namely Interacting Multiple Model (IMM), applied to Track-Before-Detect (TBD) based detection algorithm, for far objects, in infrared (IR) sequences is presented. The approach can automatically adapts the kinematic parameter estimations, such as position and velocity, in accordance with the predictions as dimensions of the target change. A sub-par sensor can cause tracking problems. In particular, for a single object, noisy observations (i.e. fragmented measures) could be associated to different tracks. In order to avoid this problem, presented framework introduces a cooperative mechanism between Joint Probabilistic Data Association Filter (JPDAF) and IMM. The experimental results on real and simulated sequences demonstrate effectiveness of the proposed approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.