The aim of this paper is to illustrate the operation of a real energy hub that can satisfy both thermal and electrical demands of a generic user. In particular, a specific case study developed around the smart grid of the University Campus of Savona (Italy), which just completed in 2014, is analysed. The grid includes different cogenerative prime movers and a storage system to manage the thermal load demand. Through a time-dependent thermo-economic hierarchical approach developed by the Authors, the work aims at optimizing the management strategy of the different prime movers to satisfy the energy demand, taking into proper account both the energetic and economic aspects. The analysis was carried out considering two different layouts, with and without a conventional stratified thermal storage, to evaluate the impact of this component in the management of the district.
Thermoeconomic optimization of an energy hub
CUNEO, ALESSANDRA;FERRARI, MARIO LUIGI;TRAVERSO, ALBERTO;MASSARDO, ARISTIDE
2014-01-01
Abstract
The aim of this paper is to illustrate the operation of a real energy hub that can satisfy both thermal and electrical demands of a generic user. In particular, a specific case study developed around the smart grid of the University Campus of Savona (Italy), which just completed in 2014, is analysed. The grid includes different cogenerative prime movers and a storage system to manage the thermal load demand. Through a time-dependent thermo-economic hierarchical approach developed by the Authors, the work aims at optimizing the management strategy of the different prime movers to satisfy the energy demand, taking into proper account both the energetic and economic aspects. The analysis was carried out considering two different layouts, with and without a conventional stratified thermal storage, to evaluate the impact of this component in the management of the district.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.