In this work we propose a novel algorithm for training L1-L2 Support Vector Machine (SVM) classifiers. L1-L2 SVMs allow to combine the effectiveness of L2 models and the feature selection characteristics of L1 solutions. The proposed training approach for L1-L2 SVM requires a minimal effort for its implementation, relying on the exploitation of well-known and widespread tools already developed for conventional L2 SVMs. Moreover, the proposed method is flexible, as it allows to train L1, L1-L2 and L2 SVMs, as well as to fine tune the trade-off between dimensionality reduction and classification accuracy. This scope is of clear importance in applications on resource-limited devices, such as smartphones, like the one we consider to verify the main advantages of the proposed approach: the UCI Human Activity Recognition real-world dataset.

A Novel Procedure for Training L1-L2 Support Vector Machine Classifiers

ANGUITA, DAVIDE;GHIO, ALESSANDRO;ONETO, LUCA;RIDELLA, SANDRO
2013

Abstract

In this work we propose a novel algorithm for training L1-L2 Support Vector Machine (SVM) classifiers. L1-L2 SVMs allow to combine the effectiveness of L2 models and the feature selection characteristics of L1 solutions. The proposed training approach for L1-L2 SVM requires a minimal effort for its implementation, relying on the exploitation of well-known and widespread tools already developed for conventional L2 SVMs. Moreover, the proposed method is flexible, as it allows to train L1, L1-L2 and L2 SVMs, as well as to fine tune the trade-off between dimensionality reduction and classification accuracy. This scope is of clear importance in applications on resource-limited devices, such as smartphones, like the one we consider to verify the main advantages of the proposed approach: the UCI Human Activity Recognition real-world dataset.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/629595
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact