The Structural Risk Minimization principle allows estimating the generalization ability of a learned hypothesis by measuring the complexity of the entire hypothesis class. Two of the most recent and effective complexity measures are the Rademacher Complexity and the Maximal Discrepancy, which have been applied to the derivation of generalization bounds for kernel classifiers. In this work, we extend their application to the regression framework.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Structural Risk Minimization and Rademacher Complexity for Regression |
Autori: | |
Data di pubblicazione: | 2012 |
Abstract: | The Structural Risk Minimization principle allows estimating the generalization ability of a learned hypothesis by measuring the complexity of the entire hypothesis class. Two of the most recent and effective complexity measures are the Rademacher Complexity and the Maximal Discrepancy, which have been applied to the derivation of generalization bounds for kernel classifiers. In this work, we extend their application to the regression framework. |
Handle: | http://hdl.handle.net/11567/539163 |
ISBN: | 9782874190490 |
Appare nelle tipologie: | 04.01 - Contributo in atti di convegno |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.