Quantum supermaps are higher-order maps transforming quantum operations into quantum operations. Here we extend the theory of quantum supermaps, originally formulated in the finite dimensional setting, to the case of higher-order maps transforming quantum operations with input in a separable von Neumann algebra and output in the algebra of the bounded operators on a given separable Hilbert space. In this setting we prove two dilation theorems for quantum supermaps that are the analogues of the Stinespring and Radon-Nikodym theorems for quantum operations. Finally, we consider the case of quantum superinstruments, namely measures with values in the set of quantum supermaps, and derive a dilation theorem for them that is analogue to Ozawa's theorem for quantum instruments. The three dilation theorems presented here show that all the supermaps dened in this paper can be implemented by connecting devices in quantum circuits.

Completely positive transformations of quantum operations

UMANITA', VERONICA
2013

Abstract

Quantum supermaps are higher-order maps transforming quantum operations into quantum operations. Here we extend the theory of quantum supermaps, originally formulated in the finite dimensional setting, to the case of higher-order maps transforming quantum operations with input in a separable von Neumann algebra and output in the algebra of the bounded operators on a given separable Hilbert space. In this setting we prove two dilation theorems for quantum supermaps that are the analogues of the Stinespring and Radon-Nikodym theorems for quantum operations. Finally, we consider the case of quantum superinstruments, namely measures with values in the set of quantum supermaps, and derive a dilation theorem for them that is analogue to Ozawa's theorem for quantum instruments. The three dilation theorems presented here show that all the supermaps dened in this paper can be implemented by connecting devices in quantum circuits.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/503947
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact