Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached. Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to provide energy dissipation. A semi-active control strategy is used to govern the modification of the damper characteristics via feedback. Optimal damper forces are assigned according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal law. A dynamic observer ensures a robust estimation of the state through a non-collocated placement of acceleration sensors. Several theoretical and practical aspects to be addressed throughout the complex process characterizing the full development of a semiactive protection system from the design to the application phase are discussed. Experimental results obtained in the mitigation of the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized.

"Mitigation of seismic vibration by semi-active control"

LEPIDI, MARCO;
2010-01-01

Abstract

Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached. Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to provide energy dissipation. A semi-active control strategy is used to govern the modification of the damper characteristics via feedback. Optimal damper forces are assigned according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal law. A dynamic observer ensures a robust estimation of the state through a non-collocated placement of acceleration sensors. Several theoretical and practical aspects to be addressed throughout the complex process characterizing the full development of a semiactive protection system from the design to the application phase are discussed. Experimental results obtained in the mitigation of the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/493987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact