In this work we show that a metaheuristic, the variable neighborhood search (VNS), can be effectively used in order to improve the performance of the hardware-friendly version of the support vector machine (SVM). Our target is the implementation of the feed-forward phase of SVM on resource-limited hardware devices, such as field programmable gate arrays (FPGAs) and digital signal processors (DSPs). The proposal has been tested on a machine-vision benchmark dataset for embedded automotive applications, showing considerable performance improvements respect to previously used techniques.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Using Variable Neighborhood Search to Improve the Support Vector Machine Performance in Embedded Automotive Applications |
Autori: | |
Data di pubblicazione: | 2008 |
Abstract: | In this work we show that a metaheuristic, the variable neighborhood search (VNS), can be effectively used in order to improve the performance of the hardware-friendly version of the support vector machine (SVM). Our target is the implementation of the feed-forward phase of SVM on resource-limited hardware devices, such as field programmable gate arrays (FPGAs) and digital signal processors (DSPs). The proposal has been tested on a machine-vision benchmark dataset for embedded automotive applications, showing considerable performance improvements respect to previously used techniques. |
Handle: | http://hdl.handle.net/11567/315616 |
ISBN: | 9781424418206 |
Appare nelle tipologie: | 04.01 - Contributo in atti di convegno |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.