Learning one class at a time can be seen as an effective solution to classification problems in which only the positive examples are easily identifiable. A kernel method to accomplish this goal consists of a representation stage - which computes the smallest sphere in feature space enclosing the positive examples - and a classification stage - which uses the obtained sphere as a decision surface to determine the positivity of new examples. In this paper we describe a kernel well suited to represent, identify, and recognize 3D objects from unconstrained images. The kernel we introduce, based on Hausdorff distance, is tailored to deal with grey-level image matching. The effectiveness of the proposed method is demonstrated on several data sets of faces and objects of artistic relevance, like statues.
Hausdorff Kernel for 3D Object Acquisition and Detection
BARLA, ANNALISA;ODONE, FRANCESCA;VERRI, ALESSANDRO
2002-01-01
Abstract
Learning one class at a time can be seen as an effective solution to classification problems in which only the positive examples are easily identifiable. A kernel method to accomplish this goal consists of a representation stage - which computes the smallest sphere in feature space enclosing the positive examples - and a classification stage - which uses the obtained sphere as a decision surface to determine the positivity of new examples. In this paper we describe a kernel well suited to represent, identify, and recognize 3D objects from unconstrained images. The kernel we introduce, based on Hausdorff distance, is tailored to deal with grey-level image matching. The effectiveness of the proposed method is demonstrated on several data sets of faces and objects of artistic relevance, like statues.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.