The faithful detection of the motion and of the distance of the objects in the visual scene is a desirable feature of any artificial vision system designed to operate in unknown environments characterized by conditions variable in time in an often unpredictable way. Here, we propose a distributed neuromorphic architecture, that, by sharing the computational resources to solve the stereo and the motion problems, produces fast and reliable estimates of optic flow and 2D disparity. The specific joint design approach allows us to obtain high performance at an affordable computational cost. The approach is validated with respect to the state-of-the-art algorithms and in real-world situations.
A fast joint bioinspired algorithm for optic flow and two-dimensional disparity estimation
CHESSA, MANUELA;SABATINI, SILVIO PAOLO;SOLARI, FABIO
2009-01-01
Abstract
The faithful detection of the motion and of the distance of the objects in the visual scene is a desirable feature of any artificial vision system designed to operate in unknown environments characterized by conditions variable in time in an often unpredictable way. Here, we propose a distributed neuromorphic architecture, that, by sharing the computational resources to solve the stereo and the motion problems, produces fast and reliable estimates of optic flow and 2D disparity. The specific joint design approach allows us to obtain high performance at an affordable computational cost. The approach is validated with respect to the state-of-the-art algorithms and in real-world situations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.