In this paper we consider the Segre-Veronese varieties, i.e., the embeddings of products of t projective spaces in the projective space PN via divisors of multi-degree (d1, . . . , dt), and we study the dimension of their higher secant varieties. We give the dimensions of all the higher secant varieties of P1 x P1 embedded by divisors of any bi-degree (d1, d2). We find that Pr x Pk, embedded by divisors of bi-degree (k + 1, 1), has no deficient higher secant varieties, and we give several examples of defective and Grassmann defective Segre-Veronese varieties.

Higher Secant Varieties of Segre-Veronese varieties

CATALISANO, MARIA VIRGINIA;GERAMITA, ANTHONY VITO;
2005-01-01

Abstract

In this paper we consider the Segre-Veronese varieties, i.e., the embeddings of products of t projective spaces in the projective space PN via divisors of multi-degree (d1, . . . , dt), and we study the dimension of their higher secant varieties. We give the dimensions of all the higher secant varieties of P1 x P1 embedded by divisors of any bi-degree (d1, d2). We find that Pr x Pk, embedded by divisors of bi-degree (k + 1, 1), has no deficient higher secant varieties, and we give several examples of defective and Grassmann defective Segre-Veronese varieties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/252716
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact