Solvable extensions of H-type groups provide a unified approach to noncompact symmetric spaces of rank one. In this paper we prove optimal pointwise estimates for the heat kernel for complex time p_z. We deduce sharp L^p estimates both for p_z and for the complex heat kernel corresponding to a distinguished right-invariant Laplacian, associated to the Laplace Beltrami operator.

Heat Kernel Bounds for Complex Time on Hyperbolic Spaces and Solvable Extensions of H-type Groups

GIULINI, SAVERIO;
1997-01-01

Abstract

Solvable extensions of H-type groups provide a unified approach to noncompact symmetric spaces of rank one. In this paper we prove optimal pointwise estimates for the heat kernel for complex time p_z. We deduce sharp L^p estimates both for p_z and for the complex heat kernel corresponding to a distinguished right-invariant Laplacian, associated to the Laplace Beltrami operator.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/204023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact