We propose a novel dataset for studying and modeling facial expression intensity. Facial expression intensity recognition is a rarely discussed challenge, likely stemming from a lack of suitable datasets. Our dataset has been created by extracting facial expressions from actors across twelve fiction films, followed by crowd-sourced online annotation of the expression intensity and variability levels. It consists of over 400 automatically extracted video segments ranging from 3 to 5 seconds, as well as annotations and facial landmarks. We also present preliminary statistics derived from this dataset.

Towards the dataset for analysis and recognition of facial expressions intensity

Niewiadomski R.
2024-01-01

Abstract

We propose a novel dataset for studying and modeling facial expression intensity. Facial expression intensity recognition is a rarely discussed challenge, likely stemming from a lack of suitable datasets. Our dataset has been created by extracting facial expressions from actors across twelve fiction films, followed by crowd-sourced online annotation of the expression intensity and variability levels. It consists of over 400 automatically extracted video segments ranging from 3 to 5 seconds, as well as annotations and facial landmarks. We also present preliminary statistics derived from this dataset.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1219923
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact