This paper presents the implementation of a Recurrent Spiking Neural Network (RSNN) using surrogate gradient descent for naturalistic textures classification. The implementation choices for the RSNN are limited to hardware-friendly models since it is intended to be integrated into an electronic skin system. Hence, a comparison between the von-Neumman and neuromorphic computing approaches has been assessed in terms of hardware efficiency. The energy consumption per inference of the proposed model is estimated using the Keras-Spiking tool built-in NengoDL framework, on three different devices namely: GPU, Intel Loihi, and SpiNNaker. The obtained results indicate that the aforementioned neuromorphic devices achieve several orders of magnitude gains in energy over von-Neumman hardware. Moreover, the proposed RSNN model overcomes similar state-of-the-art solutions in terms of classification accuracy and hardware complexity making it a promising candidate for embedded electronic skin applications.

Assessment of Recurrent Spiking Neural Networks on Neuromorphic Accelerators for Naturalistic Texture Classification

Dabbous A.;
2023-01-01

Abstract

This paper presents the implementation of a Recurrent Spiking Neural Network (RSNN) using surrogate gradient descent for naturalistic textures classification. The implementation choices for the RSNN are limited to hardware-friendly models since it is intended to be integrated into an electronic skin system. Hence, a comparison between the von-Neumman and neuromorphic computing approaches has been assessed in terms of hardware efficiency. The energy consumption per inference of the proposed model is estimated using the Keras-Spiking tool built-in NengoDL framework, on three different devices namely: GPU, Intel Loihi, and SpiNNaker. The obtained results indicate that the aforementioned neuromorphic devices achieve several orders of magnitude gains in energy over von-Neumman hardware. Moreover, the proposed RSNN model overcomes similar state-of-the-art solutions in terms of classification accuracy and hardware complexity making it a promising candidate for embedded electronic skin applications.
2023
979-8-3503-0320-9
File in questo prodotto:
File Dimensione Formato  
2023095505.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1212335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact