This paper presents a novel self-supervised path-planning method for UAV-aided networks. First, we employed an optimizer to solve training examples offline and then used the resulting solutions as demonstrations from which the UAV can learn the world model to understand the environment and implicitly discover the optimizer’s policy. UAV equipped with the world model can make real-time autonomous decisions and engage in online planning using active inference. During planning, UAV can score different policies based on the expected surprise, allowing it to choose among alternative futures. Additionally, UAV can anticipate the outcomes of its actions using the world model and assess the expected surprise in a self-supervised manner. Our method enables quicker adaptation to new situations and better performance than traditional RL, leading to broader generalizability.

Self-Supervised Path Planning in UAV-Aided Wireless Networks Based on Active Inference

Krayani, Ali;Khan, Khalid;Marcenaro, Lucio;Marchese, Mario;Regazzoni, Carlo
2024-01-01

Abstract

This paper presents a novel self-supervised path-planning method for UAV-aided networks. First, we employed an optimizer to solve training examples offline and then used the resulting solutions as demonstrations from which the UAV can learn the world model to understand the environment and implicitly discover the optimizer’s policy. UAV equipped with the world model can make real-time autonomous decisions and engage in online planning using active inference. During planning, UAV can score different policies based on the expected surprise, allowing it to choose among alternative futures. Additionally, UAV can anticipate the outcomes of its actions using the world model and assess the expected surprise in a self-supervised manner. Our method enables quicker adaptation to new situations and better performance than traditional RL, leading to broader generalizability.
File in questo prodotto:
File Dimensione Formato  
Self-Supervised_Path_Planning_in_UAV-Aided_Wireless_Networks_Based_on_Active_Inference.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1170076
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact