Transition in a cylindrical pipe flow still eludes thorough understanding. Most recent advances are based on the concept of transient growth of disturbances, but even this scenario is not fully confirmed by DNS and/or experiments. Based on the fact that even the most carefully conducted experiment is biased by uncertainties, we explore the spatial growth of disturbances developing on top of an almost ideal, axially invariant Poiseuille flow. The optimal deviation of the base flow from the ideal parabolic profile is computed by a variational technique, and unstable modes, driven by an inviscid mechanism, are found to exist for very small values of the norm of the deviation, at low Reynolds numbers.

Eigenvalue sensitivity to base flow variations in hagen-poiseuille flow

Bottaro A.;
2002-01-01

Abstract

Transition in a cylindrical pipe flow still eludes thorough understanding. Most recent advances are based on the concept of transient growth of disturbances, but even this scenario is not fully confirmed by DNS and/or experiments. Based on the fact that even the most carefully conducted experiment is biased by uncertainties, we explore the spatial growth of disturbances developing on top of an almost ideal, axially invariant Poiseuille flow. The optimal deviation of the base flow from the ideal parabolic profile is computed by a variational technique, and unstable modes, driven by an inviscid mechanism, are found to exist for very small values of the norm of the deviation, at low Reynolds numbers.
2002
0-7918-3615-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1157118
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact