Biological Imaging Through Optical Mueller Matrix Scanning Microscopy Aymeric Le Gratiet, Colin J. R. Sheppard & Alberto Diaspro Chapter First Online: 21 April 2023 149 Accesses Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL) Abstract The 4x4 Mueller matrix (MM) has been proven to be a powerful approach for understanding the whole optical properties of any sample. It is based on the analysis of the transformed polarization states from the excitation light through interaction with the optical medium. The main challenge for this technique is: (1) encoding and decoding the polarized light at the pixel-dwell time rate for the scanning light microscopy (SLM) architecture and (2) taking into account the polarimetric artifacts from the optical devices composing the instrument in a simple calibration step. In this chapter, we briefly describe the MM formalism and how SLM setups can be modeled and thus calibrated. Next, we present the experimentalist paradigm for finding the proper trade-off between the high-speed control and the most optimal optical components for controlling the polarization. Despite SLM imaging is commonly based on the collection of the non-linear signal from the sample, we show the combined modalities with MM that can acquire a complete overview of the 3D structure of the sample. At last, we discuss the capability of MM-SLM of providing tissues diagnosis in an easy way without any needs of sophisticated sample preparation protocol from the histopathologist.

Biological Imaging Through Optical Mueller Matrix Scanning Microscopy

Diaspro, Alberto
2023-01-01

Abstract

Biological Imaging Through Optical Mueller Matrix Scanning Microscopy Aymeric Le Gratiet, Colin J. R. Sheppard & Alberto Diaspro Chapter First Online: 21 April 2023 149 Accesses Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL) Abstract The 4x4 Mueller matrix (MM) has been proven to be a powerful approach for understanding the whole optical properties of any sample. It is based on the analysis of the transformed polarization states from the excitation light through interaction with the optical medium. The main challenge for this technique is: (1) encoding and decoding the polarized light at the pixel-dwell time rate for the scanning light microscopy (SLM) architecture and (2) taking into account the polarimetric artifacts from the optical devices composing the instrument in a simple calibration step. In this chapter, we briefly describe the MM formalism and how SLM setups can be modeled and thus calibrated. Next, we present the experimentalist paradigm for finding the proper trade-off between the high-speed control and the most optimal optical components for controlling the polarization. Despite SLM imaging is commonly based on the collection of the non-linear signal from the sample, we show the combined modalities with MM that can acquire a complete overview of the 3D structure of the sample. At last, we discuss the capability of MM-SLM of providing tissues diagnosis in an easy way without any needs of sophisticated sample preparation protocol from the histopathologist.
2023
978-3-031-31851-1
978-3-031-31852-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1155680
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact