Among the approximation methods for the verification of counter systems, one of them consists in model-checking their flat unfoldings. Unfortunately, the complexity characterization of model-checking problems for such operational models is not always well studied except for reachability queries or for Past LTL. In this paper, we characterize the complexity of model-checking problems on flat counter systems for the specification languages including first-order logic, linear mu-calculus, infinite automata, and related formalisms. Our results span different complexity classes (mainly from PTime to PSpace) and they apply to languages in which arithmetical constraints on counter values are systematically allowed. As far as the proof techniques are concerned, we provide a uniform approach that focuses on the main issues.
On the Complexity of Verifying Regular Properties on Flat Counter Systems
SANGNIER A
2013-01-01
Abstract
Among the approximation methods for the verification of counter systems, one of them consists in model-checking their flat unfoldings. Unfortunately, the complexity characterization of model-checking problems for such operational models is not always well studied except for reachability queries or for Past LTL. In this paper, we characterize the complexity of model-checking problems on flat counter systems for the specification languages including first-order logic, linear mu-calculus, infinite automata, and related formalisms. Our results span different complexity classes (mainly from PTime to PSpace) and they apply to languages in which arithmetical constraints on counter values are systematically allowed. As far as the proof techniques are concerned, we provide a uniform approach that focuses on the main issues.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.