[Objective] I clarify the impact of social robots on cognitive tasks, such as driving a car or driving an airplane, and show the possibility of industrial applications based on the principles of social robotics. [Approach] I adopted the MATB, a generalized version of the automobile and airplane operation tasks, as cognitive tasks to evaluate participants' performance on reaction speed, tracking performance, and short-term memory tasks that are widely applicable, rather than tasks specific to a particular situation. Also, as the stimuli from social robots, we used the iCub robot, which has been widely used in social communication research. In the analysis of participants, I not only analyzed performance, but also mental workload using skin conductance and emotional analysis of arousal-valence using facial expressions analysis. In the first experiment, I compared a social robot that use social signals with a nonsocial robot that do not use such signals and evaluated whether social robots affect cognitive task performances. In the second experiment, I focused on vitality forms and compared a calm social robot with an assertive social robot. As analysis methods, I adopted Mann-Whitney's U test for one-pair comparisons, and ART-ANOVA for analysis of variance in repeated task comparisons. Based on the results, I aimed to express vitality forms in a robot head, which is smaller in size and more flexible in placement than a full-body humanoid robot, considering car and airplane cockpit's limited space. For that, I developed a novel eyebrow and I decided to use a wire-driven technique, which is widely used in surgical robots to control soft materials. [Main results] In cognitive tasks such as car drivers and airplane pilots, I clarified the effects of social robots acting social behaviors on task performance, mental workload, and emotions. In addition, I focused on vitality forms, one of the parameters of social behaviors, and clarified the effects of different vitality forms of social robots' behavior on cognitive tasks.In cognitive tasks such as car drivers and airplane pilots, we clarified the effects of social robots acting in social behaviors on task performance, mental workload, and emotions, and showed that the presence of social robots can be effective in cognitive tasks. Furthermore, focusing on vitality forms, one of the parameters of social behaviors, we clarified the effects of different vitality forms of social robots' behaviors on cognitive tasks, and found that social robots with calm behaviors positively affected participants' facial expressions and improved their performance in a short-term memory task. Based on the results, I decided to adopt the configuration of a robot head, eliminating the torso from the social humanoid robot, iCub, considering the possibility of placement in a limited space such as cockpits of car or airplane. In designing the robot head, I developed a novel soft-material eyebrow that can be mounted on the iCub robot head to achieve continuous position and velocity changes, which is an important factor to express vitality forms. The novel eyebrows can express different vitality forms by changing the shape and velocity of the eyebrows, which was conventionally represented by the iCub's torso and arms. [Significance] The results of my research are important achievements that opens up the possibility of applying social robots to non-robotic industries such as automotive and aircraft. In addition, the newly developed soft-material eyebrows' precise shape and velocity changes have opened up new research possibilities in social robotics and social communication research themselves, enabling experiments with complex facial expressions that move beyond Ekman's simple facial expression changes definition, such as, joy, anger, sadness, and pleasure. Thus, the results of this research are one important step in both scientific and industrial applications. [Key-words] social robot, cognitive task, vitality form, robot head, facial expression, eyebrow

ON THE INFLUENCE OF SOCIAL ROBOTS IN COGNITIVE MULTITASKING AND ITS APPLICATION

AOKI, MOTONOBU
2023-10-18

Abstract

[Objective] I clarify the impact of social robots on cognitive tasks, such as driving a car or driving an airplane, and show the possibility of industrial applications based on the principles of social robotics. [Approach] I adopted the MATB, a generalized version of the automobile and airplane operation tasks, as cognitive tasks to evaluate participants' performance on reaction speed, tracking performance, and short-term memory tasks that are widely applicable, rather than tasks specific to a particular situation. Also, as the stimuli from social robots, we used the iCub robot, which has been widely used in social communication research. In the analysis of participants, I not only analyzed performance, but also mental workload using skin conductance and emotional analysis of arousal-valence using facial expressions analysis. In the first experiment, I compared a social robot that use social signals with a nonsocial robot that do not use such signals and evaluated whether social robots affect cognitive task performances. In the second experiment, I focused on vitality forms and compared a calm social robot with an assertive social robot. As analysis methods, I adopted Mann-Whitney's U test for one-pair comparisons, and ART-ANOVA for analysis of variance in repeated task comparisons. Based on the results, I aimed to express vitality forms in a robot head, which is smaller in size and more flexible in placement than a full-body humanoid robot, considering car and airplane cockpit's limited space. For that, I developed a novel eyebrow and I decided to use a wire-driven technique, which is widely used in surgical robots to control soft materials. [Main results] In cognitive tasks such as car drivers and airplane pilots, I clarified the effects of social robots acting social behaviors on task performance, mental workload, and emotions. In addition, I focused on vitality forms, one of the parameters of social behaviors, and clarified the effects of different vitality forms of social robots' behavior on cognitive tasks.In cognitive tasks such as car drivers and airplane pilots, we clarified the effects of social robots acting in social behaviors on task performance, mental workload, and emotions, and showed that the presence of social robots can be effective in cognitive tasks. Furthermore, focusing on vitality forms, one of the parameters of social behaviors, we clarified the effects of different vitality forms of social robots' behaviors on cognitive tasks, and found that social robots with calm behaviors positively affected participants' facial expressions and improved their performance in a short-term memory task. Based on the results, I decided to adopt the configuration of a robot head, eliminating the torso from the social humanoid robot, iCub, considering the possibility of placement in a limited space such as cockpits of car or airplane. In designing the robot head, I developed a novel soft-material eyebrow that can be mounted on the iCub robot head to achieve continuous position and velocity changes, which is an important factor to express vitality forms. The novel eyebrows can express different vitality forms by changing the shape and velocity of the eyebrows, which was conventionally represented by the iCub's torso and arms. [Significance] The results of my research are important achievements that opens up the possibility of applying social robots to non-robotic industries such as automotive and aircraft. In addition, the newly developed soft-material eyebrows' precise shape and velocity changes have opened up new research possibilities in social robotics and social communication research themselves, enabling experiments with complex facial expressions that move beyond Ekman's simple facial expression changes definition, such as, joy, anger, sadness, and pleasure. Thus, the results of this research are one important step in both scientific and industrial applications. [Key-words] social robot, cognitive task, vitality form, robot head, facial expression, eyebrow
18-ott-2023
File in questo prodotto:
File Dimensione Formato  
phdunige_4782582.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 5.92 MB
Formato Adobe PDF
5.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1147395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact