We present a machine learning based approach for real-time monitoring of particle detectors. The proposed strategy evaluates the compatibility between incoming batches of experimental data and a reference sample representing the data behavior in normal conditions by implementing a likelihood-ratio hypothesis test. The core model is powered by recent large-scale implementations of kernel methods, nonparametric learning algorithms that can approximate any continuous function given enough data. The resulting algorithm is fast, efficient and agnostic about the type of potential anomaly in the data. We show the performance of the model on multivariate data from a drift tube chambers muon detector.

A fast and flexible machine learning approach to data quality monitoring

Marco Letizia;Marco Rando;
2022-01-01

Abstract

We present a machine learning based approach for real-time monitoring of particle detectors. The proposed strategy evaluates the compatibility between incoming batches of experimental data and a reference sample representing the data behavior in normal conditions by implementing a likelihood-ratio hypothesis test. The core model is powered by recent large-scale implementations of kernel methods, nonparametric learning algorithms that can approximate any continuous function given enough data. The resulting algorithm is fast, efficient and agnostic about the type of potential anomaly in the data. We show the performance of the model on multivariate data from a drift tube chambers muon detector.
File in questo prodotto:
File Dimensione Formato  
NeurIPS_ML4PS_2022_7.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1145842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact