A constitutive law for the Reynolds stresses during boundary layer laminar-to-turbulent transition, constructed in previous work by elastic-net regression on an experimental data base, has been incorporated in an algebraic intermittency model. The objective is prediction improvement of transition in a separated layer under an elevated free-stream turbulence level. The modelling for such cases functions through additional production terms in the transport equations of turbulent kinetic energy and specific dissipation rate of a k-ω turbulence model. A sensor detects the front part of a separated layer and activates the production terms. These express the effect of Klebanoff streaks generated upstream of separation on the Kelvin-Helmholtz instability rolls in the separated part of the layer. By the Klebanoff streaks, the breakdown is faster and the speed of breakdown increases by the combined effects of a large adverse pressure gradient and an elevated free-stream turbulence level.

FURTHER DEVELOPMENT OF AN ALGEBRAIC INTERMITTENCY MODEL FOR SEPARATION-INDUCED TRANSITION UNDER ELEVATED FREE-STREAM TURBULENCE

Simoni D.;Lengani D.;Dellacasagrande M.;
2021-01-01

Abstract

A constitutive law for the Reynolds stresses during boundary layer laminar-to-turbulent transition, constructed in previous work by elastic-net regression on an experimental data base, has been incorporated in an algebraic intermittency model. The objective is prediction improvement of transition in a separated layer under an elevated free-stream turbulence level. The modelling for such cases functions through additional production terms in the transport equations of turbulent kinetic energy and specific dissipation rate of a k-ω turbulence model. A sensor detects the front part of a separated layer and activates the production terms. These express the effect of Klebanoff streaks generated upstream of separation on the Kelvin-Helmholtz instability rolls in the separated part of the layer. By the Klebanoff streaks, the breakdown is faster and the speed of breakdown increases by the combined effects of a large adverse pressure gradient and an elevated free-stream turbulence level.
File in questo prodotto:
File Dimensione Formato  
ETC2021-512.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 746.88 kB
Formato Adobe PDF
746.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1142615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact