Nowadays, global warming is among the most urgent challenges that we have to meet. Decrease the energy consumption and enhance the amount of energy produced trough renewable sources rather than fossil fuels are imperative actions to deal with climate change. Since lighting is responsible of about 20 % of the total energy consumption and since photovoltaics is among the renewable energy source that grew more in the last decades, optoelectronics is a central field in such a challenge. Many of the crucial improvements that have been reached in the last decades in this field were made possible thanks to the development and optimization of the materials involved. In this study, oxides were investigated at the nanoscale and in the form of thin films as valuable solutions to current issues in modern optoelectronics. In particular, CsPbBr3 nanocrystals are interesting materials for light emission applications, but they suffer from poor stability against moisture, polar solvents etc. As a consequence, the reaction between maleic anhydride and the oleylamine capping ligand was exploited to encapsulate CsPbBr3 nanocrystals in SiO2 shells (CsPbBr3@SiO2). Maleic anhydride converted the starting Cs4PbBr6 nanocrystals into CsPbBr3 ones, and the addition of silica precursor promoted the shell growth. Further experiments revealed the crucial role played by Cs4PbBr6 nanocrystals as a starting material and of the reaction environment in order to successfully grow CsPbBr3@SiO2. This study paves the way for the exploitation of the reactivity of surface capping ligands for the encapsulation of nanocrystals, and potentially also for ligand exchange or stripping, a new chemistry route for more stable nanomaterials. Functional oxides were also investigated in the form of thin films for solar cell applications. Cu(In,Ga)Se2 and Sb2Se3 are emerging photovoltaic technologies whose market availability is limited by the presence of a toxic CdS buffer layer. Zn(1-x)MgxO was identified as a potential alternative oxide for the deposition of buffer layers for Cu(In,Ga)Se2 solar cells, whereas titania was investigated for cells based on Sb2Se3. In view of their application as buffer layers in Cu(In,Ga)Se2 solar cells, Zn(1-x)MgxO thin films were grown trough chemical bath deposition onto soda lime glass, in order to optimize the extent of Mg incorporation and the morphology of the film, the role of the complexing agent citric acid together with the nominal Mg amount was investigated. Likewise, titania thin films were prepared trough spin coating onto fluorine-doped thin oxide substrates. Several attempts were devoted to control and measure the n-type doping of the titania layers trough an acidic treatment with the final goal of improving the solar cell performance. Lastly, thermodynamic calculations allowed a stability comparison among TixOy species.

Il riscaldamento globale è tra le problematiche più urgenti che dobbiamo affrontare. Diminuire il consumo energetico e incrementare l’energia prodotta da fonti rinnovabili piuttosto che dai combustibili fossili sono azioni fondamentali per affrontare il cambiamento climatico. Dato che l’illuminazione è responsabile del 20% del consumo totale di energia e che il fotovoltaico è tra le fonti di energia rinnovabile che è cresciuta di più negli ultimi decenni, l’optoelettronica riveste un ruolo centrale in questa sfida. Molti degli impressionanti miglioramenti raggiunti negli ultimi decenni in questo campo sono stati resi possibili dallo sviluppo e dall’ottimizzazione dei materiali impiegati. Film sottili e nanostrutture di ossidi sono stati studiati in questo lavoro come una possibile soluzione a problematiche nel settore dell’optoelettronica. In particolare, nanocristalli di CsPbBr3 sono di largo interesse come emettitori di luce, ma risultano poco stabili quando esposti a umidità, solventi polari, ecc. Di conseguenza, nanocristalli di CsPbBr3 sono stati incapsulati in un guscio di silica (CsPbBr3@SiO2) sfruttando una reazione tra l’anidride maleica e il legante oleilammina sulla superficie del CsPbBr3. In particolare, nanocristalli di Cs4PbBr6 vengono convertiti dall’anidride maleica in nanocristalli di CsPbBr3 e l’aggiunta di un precursore della silica permette l’incapsulamento. Ulteriori esperimenti hanno rivelato il ruolo cruciale dei nanocristalli di Cs4PbBr6 e dell’ambiente di reazione ottenuto dopo la loro conversione per garantire la formazione di CsPbBr3@SiO2. Questo lavoro apre la strada allo studio della reattività dei leganti superficiali per l’incapsulazione dei nanocristalli, ma anche per strade alternative per lo scambio o la rimozione dei liganti, una nuova chimica per nanomateriali più stabili. Gli ossidi funzionali sono stati investigati anche in forma di film sottili per applicazioni fotovoltaiche. In dettaglio, la commercializzazione di celle solari a base di materiali emergenti come Cu(In,Ga)Se2 e Sb2Se3 contengono un buffer layer a base di CdS, un composto altamente tossico che ostacola la loro commercializzazione. Zn(1-x)MgxO è stato identificato come un potenziale materiale alternativo per celle solari a base di Cu(In,Ga)Se2 mentre la titania per Sb2Se3. Film sottili di Zn(1-x)MgxO sono stati preparati mediante deposizione da bagno chimico su substrati di vetro. E’ stato studiato il ruolo dell’etanolammina e dell’acido citrico insieme al contenuto di Mg sulle proprietà del film con lo scopo di impiegare questi film come buffer layer in celle solari al Cu(In,Ga)Se2 anche mediate calcoli degli equilibri in soluzione per comprendere il meccanismo di formazione del film. Analogamente, film sottili di titania sono stati preparati mediante spin coating su ossido di stagno drogato fluoro. Un trattamento acido è stato investigato per controllare il drogaggio nel film sottile di titania al fine di ottimizzare le performance della cella solare. Alcuni calcoli termodinamici sono stati eseguiti per confrontare la stabilità di fasi a diverso contenuto di titanio e di ossigeno.

Functional oxides for optoelectronics

ROSSI, CHRISTIAN
2023-03-23

Abstract

Nowadays, global warming is among the most urgent challenges that we have to meet. Decrease the energy consumption and enhance the amount of energy produced trough renewable sources rather than fossil fuels are imperative actions to deal with climate change. Since lighting is responsible of about 20 % of the total energy consumption and since photovoltaics is among the renewable energy source that grew more in the last decades, optoelectronics is a central field in such a challenge. Many of the crucial improvements that have been reached in the last decades in this field were made possible thanks to the development and optimization of the materials involved. In this study, oxides were investigated at the nanoscale and in the form of thin films as valuable solutions to current issues in modern optoelectronics. In particular, CsPbBr3 nanocrystals are interesting materials for light emission applications, but they suffer from poor stability against moisture, polar solvents etc. As a consequence, the reaction between maleic anhydride and the oleylamine capping ligand was exploited to encapsulate CsPbBr3 nanocrystals in SiO2 shells (CsPbBr3@SiO2). Maleic anhydride converted the starting Cs4PbBr6 nanocrystals into CsPbBr3 ones, and the addition of silica precursor promoted the shell growth. Further experiments revealed the crucial role played by Cs4PbBr6 nanocrystals as a starting material and of the reaction environment in order to successfully grow CsPbBr3@SiO2. This study paves the way for the exploitation of the reactivity of surface capping ligands for the encapsulation of nanocrystals, and potentially also for ligand exchange or stripping, a new chemistry route for more stable nanomaterials. Functional oxides were also investigated in the form of thin films for solar cell applications. Cu(In,Ga)Se2 and Sb2Se3 are emerging photovoltaic technologies whose market availability is limited by the presence of a toxic CdS buffer layer. Zn(1-x)MgxO was identified as a potential alternative oxide for the deposition of buffer layers for Cu(In,Ga)Se2 solar cells, whereas titania was investigated for cells based on Sb2Se3. In view of their application as buffer layers in Cu(In,Ga)Se2 solar cells, Zn(1-x)MgxO thin films were grown trough chemical bath deposition onto soda lime glass, in order to optimize the extent of Mg incorporation and the morphology of the film, the role of the complexing agent citric acid together with the nominal Mg amount was investigated. Likewise, titania thin films were prepared trough spin coating onto fluorine-doped thin oxide substrates. Several attempts were devoted to control and measure the n-type doping of the titania layers trough an acidic treatment with the final goal of improving the solar cell performance. Lastly, thermodynamic calculations allowed a stability comparison among TixOy species.
23-mar-2023
Il riscaldamento globale è tra le problematiche più urgenti che dobbiamo affrontare. Diminuire il consumo energetico e incrementare l’energia prodotta da fonti rinnovabili piuttosto che dai combustibili fossili sono azioni fondamentali per affrontare il cambiamento climatico. Dato che l’illuminazione è responsabile del 20% del consumo totale di energia e che il fotovoltaico è tra le fonti di energia rinnovabile che è cresciuta di più negli ultimi decenni, l’optoelettronica riveste un ruolo centrale in questa sfida. Molti degli impressionanti miglioramenti raggiunti negli ultimi decenni in questo campo sono stati resi possibili dallo sviluppo e dall’ottimizzazione dei materiali impiegati. Film sottili e nanostrutture di ossidi sono stati studiati in questo lavoro come una possibile soluzione a problematiche nel settore dell’optoelettronica. In particolare, nanocristalli di CsPbBr3 sono di largo interesse come emettitori di luce, ma risultano poco stabili quando esposti a umidità, solventi polari, ecc. Di conseguenza, nanocristalli di CsPbBr3 sono stati incapsulati in un guscio di silica (CsPbBr3@SiO2) sfruttando una reazione tra l’anidride maleica e il legante oleilammina sulla superficie del CsPbBr3. In particolare, nanocristalli di Cs4PbBr6 vengono convertiti dall’anidride maleica in nanocristalli di CsPbBr3 e l’aggiunta di un precursore della silica permette l’incapsulamento. Ulteriori esperimenti hanno rivelato il ruolo cruciale dei nanocristalli di Cs4PbBr6 e dell’ambiente di reazione ottenuto dopo la loro conversione per garantire la formazione di CsPbBr3@SiO2. Questo lavoro apre la strada allo studio della reattività dei leganti superficiali per l’incapsulazione dei nanocristalli, ma anche per strade alternative per lo scambio o la rimozione dei liganti, una nuova chimica per nanomateriali più stabili. Gli ossidi funzionali sono stati investigati anche in forma di film sottili per applicazioni fotovoltaiche. In dettaglio, la commercializzazione di celle solari a base di materiali emergenti come Cu(In,Ga)Se2 e Sb2Se3 contengono un buffer layer a base di CdS, un composto altamente tossico che ostacola la loro commercializzazione. Zn(1-x)MgxO è stato identificato come un potenziale materiale alternativo per celle solari a base di Cu(In,Ga)Se2 mentre la titania per Sb2Se3. Film sottili di Zn(1-x)MgxO sono stati preparati mediante deposizione da bagno chimico su substrati di vetro. E’ stato studiato il ruolo dell’etanolammina e dell’acido citrico insieme al contenuto di Mg sulle proprietà del film con lo scopo di impiegare questi film come buffer layer in celle solari al Cu(In,Ga)Se2 anche mediate calcoli degli equilibri in soluzione per comprendere il meccanismo di formazione del film. Analogamente, film sottili di titania sono stati preparati mediante spin coating su ossido di stagno drogato fluoro. Un trattamento acido è stato investigato per controllare il drogaggio nel film sottile di titania al fine di ottimizzare le performance della cella solare. Alcuni calcoli termodinamici sono stati eseguiti per confrontare la stabilità di fasi a diverso contenuto di titanio e di ossigeno.
thin films; nanochemistry; photovoltaics; optoelectronics; oxides; thin film photovoltaics; core@shell;
film sottili; nanochimica; fotovoltaico; optoelettronica; ossidi; fotovoltaico a film sottile; core@shell;
File in questo prodotto:
File Dimensione Formato  
phdunige_4076294.pdf

accesso aperto

Descrizione: Tesi dottorato di Christian Rossi in un unico pdf
Tipologia: Tesi di dottorato
Dimensione 6.78 MB
Formato Adobe PDF
6.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1109595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact