The development of in vitro neuronal models constituted by patterned networks is of significant interest in the neuroscientific community and requires the convergence of electrophysiological studies with micro/nano-fabrication techniques. In this paper we make use of a methodology to induce self-organization of networks into two connected sub-populations grown onto commercially available Micro Electrode Arrays (MEAs) in order to understand the role of 'burst leaders' in generating the collective synchronous events (i.e. network bursts) spontaneously arising in dissociated cultures. Considering the multitude of connections shown by uniform neuronal cultures, the restraint of neurite outgrowth along specific pathways ensures a considerable control over network complexity. Here we exploit this topological configuration to investigate whether and how network burst generation is affected by the development of the network. Our results constitute important evidence that engineered neuronal networks are a powerful platform to systematically approach questions related to the dynamics of neuronal assemblies.

Role of major burst leaders in modular hippocampal networks

Bisio M.;Berdondini L.;Chiappalone M.
2015-01-01

Abstract

The development of in vitro neuronal models constituted by patterned networks is of significant interest in the neuroscientific community and requires the convergence of electrophysiological studies with micro/nano-fabrication techniques. In this paper we make use of a methodology to induce self-organization of networks into two connected sub-populations grown onto commercially available Micro Electrode Arrays (MEAs) in order to understand the role of 'burst leaders' in generating the collective synchronous events (i.e. network bursts) spontaneously arising in dissociated cultures. Considering the multitude of connections shown by uniform neuronal cultures, the restraint of neurite outgrowth along specific pathways ensures a considerable control over network complexity. Here we exploit this topological configuration to investigate whether and how network burst generation is affected by the development of the network. Our results constitute important evidence that engineered neuronal networks are a powerful platform to systematically approach questions related to the dynamics of neuronal assemblies.
2015
978-1-4673-6389-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1106917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact